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Abstract: One approach to stability analysis depends on identifying the signs
of the real parts of roots of a characteristic function. Where the characteristic
function for an ordinary differential equation typically is a polynomial with real
coefficients, the characteristic function for a delay differential equation normally
includes exponential terms that involve the delay quantities. These functions,
therefore, are called “exponential polynomials” [3], or “transcendental charac-
teristic functions” [5], [14]. Stability analysis of delay models has, for a main
body of work, been on a case by case basis, using a technique for treating expo-
nential polynomials that goes back to [8]. What is lacking, however, are results
that would both (a) apply to the general multi-delay case; and (b) be useful
for the clinical scientist. Toward the possibility of a practical general theory,
we use a linear algebraic framework. In this context, the traditional technique
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[8] is related to a factorization of the general delay equation that is point-wise
linear and offers insight into the general structure of the zero set. Necessary
and sufficient conditions for roots are obtained that allow for a unified approach
to multi-delay equations. Certain classical formulas for the one-delay equation
are extended to the multi-delay equation. Results are illustrated with examples
and applications from the literature. A general result on Hopf bifurcation in the
multi-delay system is given. The paper concludes with an indication of further
related lines of enquiry that emerge from the context.
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1. Introduction

One approach to stability analysis depends on identifying the signs of the real
parts of roots of a characteristic function. The characteristic function for an
ordinary differential equation typically is a polynomial with real coefficients.
In a similar way, the characteristic function for a delay differential equation
that depends on a finite number of delay terms of the form t− τ̃ normally is of
the form ∆τ (λ) = P (λ) +Q1(λ)e−λτ1 + . . .+Qk(λ)e−λτk , where the Qi(λ) are
polynomials in λ with real coefficients. These characteristic functions are called
“exponential polynomials” [3], or “transcendental characteristic functions” [5],
[14]. Stability analysis of delay models and their transcendental characteristic
functions has, for a main body of work, been on a case by case basis, using
a technique for treating exponential polynomials that goes back to Hale [8].
The technique has enjoyed widespread application to modeling processes that
involve delay quantities (see [11], [5], [14] for bibliographies) and recently has
been useful in the analysis of delay models for HIV infection of CD4+ - T
Cells [5], [6], [12], bacteriophage infection [4], and numerous other processes in
biology and engineering.

As it stands, however, Hale’s technique mainly is useful when there is only
one delay (see, however, [14], [2], [7] for examples of how the technique can
sometimes be adapted to special cases of two-delay and three-delay models; and
[12] for applications and preliminary results that help lead toward the general
case treated in the present paper). In view of the increasing use of delay models
in biology and engineering, what would be helpful, therefore, would be results
for the general multi-delay equation, in terms useful to the laboratory scientist.

A transcendental characteristic function is analytic. It is not, however, a
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polynomial in λ. It follows that, for stability analysis, the well known Routh-
Hurwitz criteria for determining the signs of the real parts of roots do not
apply. This situation is discussed in [2, p. 33], where it is pointed out that,
while there are certain general tests for analyzing the roots of a transcendental
equation ([15], for example), applying those tests can be non-trivial. Indeed, the
classically formulated approach is based on Cauchy’s Theorem and the resulting
index theorem. One would therefore look to a suitable contour integral. In
general, however, in order to evaluate the contour integral for a particular
characteristic function, one would require detailed information on the values of
the function along the contour – information which, frequently, is as unknown
as information on root locations.

In [10], results on stability analysis of multi-delay equations are given in
terms of special norms of the Jacobian matrices of the linearized equation;
as well as certain contour integrals. The practical difficulty of appealing to
contour integrals is as just mentioned; and evaluation of the matrix norms also
requires more data on the polynomials and matrix coefficients than is easily
available from the characteristic function. In fact, in many cases, being able to
calculate these norms would require more data than merely having the roots of
the characteristic equations.

A main purpose of the present paper, therefore, is to make some progress to-
ward a general and practical theory of multi-delay equations. Results are given
directly in terms of the coefficients of the transcendental characteristic function,
and so are intended to be useful in a laboratory situation. We avoid the impasse
involved when invoking the classical index theory, by exploiting algebraic struc-
tures specific to the framework of exponential polynomials. In particular, we
advert to and generalize a point-wise matrix factorization of the transcendental
characteristic equation that is implicit in Hale’s technique. Among other things,
consideration of domains of definition provides useful necessary and sufficient
conditions for roots in terms of that factorization.

The paper outline is as follows: In Section 2, we restrict to equations that
have one real delay. In Section 3, we generalize the results of Section 2 to the
case of k real delays τ = (τ1, . . . , τk). Recall that in the one-delay transcendental
characteristic function ∆(λ) = P (λ) + Q(λ)e−λτ , for purely imaginary roots
there is the well-known necessary condition |P |2 − |Q|2 = 0. We obtain a
natural generalization of this to the k -delay equation that pertains to arbitrary
roots (imaginary or otherwise). For the purposes of illustration, throughout the
paper we apply our results to certain classical results; to known contemporary
results; and to certain introduced equations. In Section 4, we obtain a general
theorem on Hopf bifurcation in the k-delay equation. In Section 5, we conclude
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by indicating further possible lines of enquiry that follow from the present
context.

2. Characteristic Equations with One Delay

Taking real and complex parts, we find that λ = ρ + iω is a root of the tran-
scendental characteristic equation ∆(λ) = P (λ) + e−λτQ(λ) = 0 if and only
if

[

ReP
ImP

]

= e−λτ

[

−ReQ − ImQ

− ImQ ReQ

] [

cos(ωτ)
sin(ωτ)

]

= M

[

cos(ωτ)
sin(ωτ)

]

. (2.1)

Note that the operator M has the special form

M =

[

E F

F −E

]

, (2.2)

where in the present case, E = −e−ρτ ReQ and F = −e−ρτ ImQ.
Using polar decomposition, we obtain

M = (T ∗T )1/2 V =

(
√
E2 + F 2 0

0 −
√
E2 + F 2

)

V , (2.3)

where V is a (real) orthogonal matrix.
Suppose that detM 6= 0, that is,

detM = −
[

E2 + F 2
]

= −e−2ρτ
[

( ReQ)2 + ( ImQ)2
]

6= 0 . (2.4)

Note that if detM = 0, then M = 0. That is, at the particular (ρ, ω) where
the determinant is evaluated, the equation reduces to where there is no delay
component. In the case of two or more delay terms, however, the rank of the
matrix M need not be full, and it is this degree of freedom that plays into the
structure of the solution set. This will be elaborated on in Section 3 below.

For the moment, then, we continue with the hypothesis that detM 6= 0,
and we formally solve for the right-hand-side of equation (2.1):

[

cos(ωτ)
sin(ωτ)

]

= M−1

[

ReP
ImP

]

=

( −1

E2 + F 2

) [

−E −F
−F E

] [

ReP
ImP

]

=

[

X

Y

]

. (2.5)
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Using a suitable branch of one of the inverse trigonometric functions –
arccos(θ), arcsin(θ), or arctan(θ) – an implicit relation W (ρ, ω, τ) = 0 can be
obtained, correlating the variables ρ, ω and τ . If, for example, X 6= 0 and
ω 6= 0, then

τ =
1

ω
arctan

(

Y

X

)

. (2.6)

Since in general X and Y can depend on τ , the relation (2.6) is not neces-
sarily a function.

Note that with the identification X = cos(ωτ), Y = sin(ωτ), this formal
solution given by (2.5) is not always defined. For, when the matrix M is invert-
ible, the solution [X,Y ]T to equation (2.5) is unique; and so if X2 + Y 2 6= 1,
identifying the coordinates via the cosine and sine functions is not tenable. On
the other hand, if both X2 + Y 2 = 1 and the argument for the pair [X,Y ]T is
equivalent to ωτ (mod2π), then X = cos(ωτ), Y = sin(ωτ) provides a solution.

For the general problem of obtaining the argument determined by a given
vector, it is necessary to select branches of the multi-valued argument function.
For the present situation, however, it is necessary only to determine whether
or not two vectors are parallel. In this special case, therefore, we may appeal
to the dot product to obtain explicit criteria for the coordinates.

These observations lead to the following proposition.

Proposition 2.1. Consider the system of equations

[

U

V

]

=

[

ReP
ImP

]

= e−ρτ

[

−ReQ − ImQ

− ImQ ReQ

] [

cos(ωτ)
sin(ωτ)

]

. (2.7)

Let M be defined by (2.2) and suppose that detM 6= 0. Then, there is a
solution to equation (2.7) if and only if there exists a triple (ρ, ω, τ ) such that

[

X

Y

]

= M−1

[

U

V

]

(2.8)

is a unit vector; and

[

X

Y

]

·
[

cos(ωτ)
sin(ωτ)

]

=

∥

∥

∥

∥

[

X

Y

]
∥

∥

∥

∥

= 1 > 0 . (2.9)

Proof. It only remains to comment on the second condition. But this is
equivalent to the cosine of the angle between the two vectors being unity. In
other words, the second condition is that the argument for [X,Y ]T be equivalent
to ωτ mod 2π.
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Remark 2.2. Since M is angle preserving, M−1

[

U

V

]

is a unit vector if

and only if

∥

∥

∥

∥

[

U

V

]
∥

∥

∥

∥

= ‖M‖ =
√

E2 + F 2 = e−ρτ
√

( ReQ)2 + ( ImQ)2 .

Recall that [U, V ]T = [ReP, ImP ]T .

So, more concisely, we obtain |P | = e−ρτ |Q|, which for the non-trivial char-
acteristic equation is equivalent to Fτ (ρ, ω) = |P |2 − |e−ρτQ|2
= 0. For the special case ρ = 0, this gives the well known necessary condi-
tion for purely imaginary roots, namely, F (ω) = |P |2 − |Q|2 = 0 (see, e.g. [11],
Theorem 4.1, p. 83).

Corollary 2.3. Suppose that [X,Y ]T is a unit vector that solves (2.7). If
ω 6= 0,X 6= 0 and the ratio Y

X is independent of τ , then a family of critical
delays is completely determined by (2.6).

Proof. Let τ = τc be the smallest positive solution for (2.6): That is, τc is
the smallest positive number with ωcτ satisfying tanωcτ = Y

X . The family of

solutions is obtained from τ = τc + kπ
ω , where k is any non-negative integer.

Example 2.4. (see [3], Lemma 3.2, p. 64) This classical result states that
all roots of the equation

aλ+ b+ ce−λτ = 0 (2.10)

lie to the left of some vertical line in the complex plane.

We use our approach to re-derive this result.

Proof. If c = 0, then the characteristic equation is trivial with a unique
solution. Suppose therefore that c 6= 0. In this case, equation (2.1) is

[

aρ+ b

aω

]

=

[

−ce−ρτ 0
0 ce−ρτ

] [

X

Y

]

,

[

X

Y

]

=

[

cos(ωτ)
sin(ωτ)

]

. (2.11)

Solving for X,Y , using X2 + Y 2 = 1 and completing the square in ρ, it
follows that

(

ρ+
1

a

)2

+ ω2 =
c2

a2e2ρτ
+

1 − b2

a2
. (2.12)

Isolating ω2, we get

ω2 =
c2

a2e2ρτ
+

1 − b2

a2
−

(

ρ+
1

a

)2

. (2.13)
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For large ρ > 0 the right hand side becomes negative. Hence, for ρ suffi-
ciently large there can be no solution, as claimed.

More can be said. In order for a solution to exist, the right-hand-side of
equation (2.12) must be non-negative. If 1 − b2 ≥ 0, this is true for all ρ and
τ . If 1 − b2 < 0, however, an additional constraint is required, for then it is

necessary also that ρ ≤ 1
2τ ln

(

c2

b2−1

)

. In this case the quadratic equation gives

two candidates for ω. We have not yet invoked the conditions imposed on the
angles. Depending on the values of the various constants involved, for each ρ

in the domain of (2.13), there will be two solutions, one solution, or no solution
to equation to (2.10).

Note also that for any candidate solution [X,Y ]T with X 6= 0, equation
(2.11) shows that Y

X is independent of the delay term τ . It follows from Corol-
lary 2.3 that when ω 6= 0, possible critical delays are obtained from a multi-
valued function in ω.

Example 2.5. In this example we recall another classical result (Hayes
equation [9]) that appears as Theorem 13.8 of [3]. In [3], the theorem reads as
follows: All the roots of peλ +q−λeλ = 0, where p and q are real, have negative
real parts if and only if:

(a) p < 1, and

(b) p < −q <
√

ω2
1 + p2,

where ω1 is a root of ω = p tanω, with 0 < ω < π. If p = 0, we take ω1 = π
2 .

We give an analysis of the Hayes equation based on the approach of the
present paper.

By taking real and imaginary parts, the matrix formulation of the equation
is:

[

q

0

]

=

[

eρ (−p+ ρ) −eρω
eρω eρ (−p+ ρ)

] [

cosω
sinω

]

. (2.14)

This becomes
[

q

0

]

=

[

E F

−F E

] [

X

Y

]

, X2 + Y 2 = 1 ,

Arg

[

X

Y

]

≡ ω mod 2π ,
(2.15)

where E = eρ (−p+ ρ), F = −eρω.
Using the inverse matrix to solve for [X,Y ]T , we obtain

[

X

Y

]

=
1

E2 + F 2

[

qE

qF

]

. (2.16)
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Imposing the norm criterion on [X,Y ]T , we obtain

q2 = E2 + F 2 . (2.17)

We therefore get the following result: A complex number λ = ρ + iω is a
root of the Hayes equation if and only if

(a1) e−2ρq2 = (−p+ ρ)2 + ω2, and

(b1)

[

eρq (−p+ ρ)
−eρω

] [

cosω
sinω

]

= 1.

As a corollary, we obtain: The Hayes equation has a purely imaginary root
(ρ = 0) if and only if:

(a2) q2 = p2 + ω2, and

(b2)

[

−qp
−qω

]

·
[

cosω
sinω

]

= 1.

Note that for this situation there are two candidates for ω determined by the
quadratic equation ω2 = q2 − p2. It follows that there are no purely imaginary
roots if and only if q2 < p2 or the dot product criterion fails.

Regarding the issue of roots with negative real parts, we may appeal to
equation (a1) above. For fixed ω, the left quantity is exponential in ρ, while
the right quantity is quadratic in ρ. If, at ρ = 0, the exponential intercept falls
below the quadratic intercept, then, modulo the dot product criterion, there
will be a root candidate with ρ < 0.

Further analysis is possible, but our present purpose is only to illustrate the
method.

Example 2.6. (see [13]) Investigating the possibility of purely imaginary
roots λ = iω, the real and imaginary parts of the characteristic equation (29)
in [13] are

−Aω2 − δcω sin(ωτ) + δcρ− δc(ρ − ψ′) cos(ωτ) = 0 ,
−ω3 +Bω − bcω cos(ωτ) + δc(ρ− ψ′) sin(ωτ) = 0

(2.18)

(in [13], a complex root is written λ = µ + iυ; and ρ is a constant in their
equation. In order to connect notation with the present paper, we have used
ω in place of ν for the imaginary part of the possible root. We have, however,
followed their use of ρ as a constant of the equation).

As in (2.1), we express this as a matrix system to obtain

[

−Aω2 + δcρ

−ω3 +Bω

]

=

[

−δc(ρ− ψ′) −δcω
−δcω δc(ρ − ψ′)

] [

X

Y

]

, (2.19)
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with
[

X

Y

]

=

[

cos(ωτ)
sin(ωτ)

]

. (2.20)

Using the notation of (2.2),

E = −δc(ρ− ψ′) , F = −δcω, U = −Aω2 + δcρ, V = −ω3 +Bω ,

and
detM(ω) = −(E2 + F 2) = −(δc)2

[

(ρ− ψ′)2 + ω2
]

6= 0 .

We assume that the product δc (ρ− ψ′) 6= 0, so that the matrix M is
non-singular for all ω (from (2.3), if M is singular then, because of its special
structure, it must be the zero matrix).

Suppose that for the unique solution [X(ω), Y (ω)]T to equation (2.19) we
have X 6= 0. Then, since the coefficients of the equation do not depend on the
delay τ , we may use (2.6). In other words, we obtain τ as a multi-function of
ω.

Recall also that this is conditional, subject to the constraints that [X,Y ]T

be a unit vector and that its argument be equivalent to ωτ mod 2π (see (2.9)).
Altogether, this gives four equations for two unknowns (ω, τ). One may

then investigate that (when the constants satisfy the Routh-Hurwitz criteria as
given in [13]) this particular system is over-determined with no solution. See
also Remark 3.2 below.

The following Proposition 2.7 and its Corollary 2.8 constitute a refinement
of Theorem 1.1 from [11], p. 64. The roots of (2.21) (below) depend not only on
the relative magnitude but also on the relative sign of the leading coefficients
a, b. When suitably indexed, we also obtain stability parameters (see Remark
2.9). The methods used are traditional, and do not depend on Proposition 2.1
as such. The result, however, does bear on the general topic of this section of
the paper, namely, zeros of single-delay characteristic functions. In addition,
while the result is special, the basis of the proof helps reveal the need for new
methods. That is, the traditional approach of factoring and then using Rouché’s
Theorem is not adequate for a sum of numerous delay terms as in the general
multi-delay equation. The last results of this section therefore also implicitly
point to the need for new methods, and it is to that topic that we direct to
Section 3.

Proposition 2.7. Consider a characteristic equation of the form

a+ be−λτ = 0 , (2.21)

where a and b are real constants with ab 6= 0, and τ > 0.
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(i) If ab > 0, then the roots λ = ρ+ iω are given by

ρ =
1

τ
ln

∣

∣

∣

∣

b

a

∣

∣

∣

∣

, ω =
1

τ
(2k + 1)π . (2.22)

(ii) If ab < 0, then the roots are given by

ρ =
1

τ
ln

∣

∣

∣

∣

b

a

∣

∣

∣

∣

, ω =
1

τ
(2kπ) . (2.23)

Proof. Dividing (3.7) by b, we obtain

1 +
b

a
e−ρτ [cos(ωτ) − i sin(ωτ)] = 0 .

For the imaginary part to be zero we obtain ωτ = (2k + 1) π or ωτ = 2kπ.

(i) Suppose that ab > 0. If ωτ = (2k + 1)π, then cos(ωτ) = −1. In that
case ρ is given by (2.22). If ωτ = 2kπ, then cos(ωτ) = 1 and there is no solution.

(ii) The argument is similar for ab < 0.

Corollary 2.8. The ratio b
a 6= 0 provides a stability parameter. That is:

(i) If
∣

∣

b
a

∣

∣ < 1, then all roots of (2.21) have negative real part, for all τ ;

(ii) If
∣

∣

b
a

∣

∣ > 1, then all roots of (2.21) have strictly positive real part, for all
τ ;

(iii) If
∣

∣

b
a

∣

∣ = 1, the all roots of (2.21) are purely imaginary, for all τ .

Proof. Substitute these cases into equations (2.22) and (2.23), and the
result follows.

Remark 2.9. Note that τ can be taken as a parameterization of equations.
Suppose that σ is some additional parameter from some topological space. If

the real valued functions sign
(

b(σ,τ)

a(σ,τ)

)

, sign
(

1 −
∣

∣

∣

b(σ,τ)

a(σ,τ)

∣

∣

∣

)

are continuous, then,

for non-zero roots, we obtain continuous set maps in the complex plane that for
all (σ, τ) have real parts strictly positive; or strictly negative. In applications,
this typically is a local property in the parameters (σ, τ).

Much as in [11] (Theorem 1.1, p. 64), Proposition 2.7 may be extended to a
result for characteristic equations of the form ∆(λ) = P (λ) +Q(λ)e−λτ , where
the polynomials P (λ), Q(λ) are of arbitrary, but equal, degree.

Corollary 2.10. Consider the characteristic equation

∆(λ) = P (λ) +Q(λ)e−λτ = 0 ,
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where, as in Section 1, P (λ), Q(λ) are polynomials in λ with real coefficients.
Suppose that degP (λ) = degQ(λ) = n ≥ 0, and that the leading coefficients
of P,Q are an, bn respectively.

(i) If
∣

∣

∣

bn

an

∣

∣

∣
< 1, then there are infinitely many roots of arbitrarily large

norm, asymptotic (in both the positive and negative imaginary directions) to a
vertical line with negative real part;

(ii) If
∣

∣

∣

bn

an

∣

∣

∣
> 1, then there are infinitely many roots of arbitrarily large

norm, asymptotic (in both the positive and negative imaginary directions) to a
vertical line with positive real part; and

(iii) If
∣

∣

∣

bn

an

∣

∣

∣
= 1, then there are infinitely many roots of arbitrarily large

norm, asymptotic (in both the positive and negative imaginary directions) to
the imaginary axis.

Proof. As in Theorem 1.1 of [11], the proof is based on Rouché’s Theorem.
A brief description is as follows:

First, for convenience, we recall a version of Rouché’s Theorem: Suppose
that f(λ) and g(λ) are analytic on a region Ω and satisfy |f(λ) − g(λ)| < |f(λ)|
on a circle Γ. Then f(λ) and g(λ) have the same number of zeros enclosed by Γ
(in the classical texts, Rouché’s Theorem often is given as a direct consequence
of the Argument Principle/Index Theorem, see e.g. [1], Section 5.2).

Now, the function ∆(λ) can be written as

λn
(

an + bne
−λτ

)

+R(λ, τ) ,

where

R(λ, τ) = A(λ) +B(λ)e−λτ

andA(λ), B(λ) are polynomials in λ of degree at most n−1. Therefore ∆(λ) = 0
if and only if g(λ, τ) = a + be−λτ + 1

λnR(λ, τ) = 0. Evidently, for λ of large
modulus, 1

λnR(λ, τ) converges uniformly to zero, and so f(λ) = an + bne
−λτ

and g(λ) = an + bne
−λτ + 1

λnR(λ, τ) are mutually asymptotic. It is, therefore,
to this pair of functions that Rouché’s Theorem will be applied.

A first step is to enclose each of the zeros λk of f(λ) = an + bne
−λτ . Use

Proposition 2.7 to obtain radius r > 0 sufficiently small so that f(λ) 6= 0 on the
circle Γk(r) of radius r centered at the isolated λk. Let δ > 0 be the maximum
of f(λ) restricted to Γk(r). On this circle, the difference |f(λ) − g(λ)| =

∣

∣

1
λnR

∣

∣,
which, as mentioned above, converges uniformly to zero for λ of large modulus
(note that the fact that this convergence is uniform is sufficient for present
purposes, but not necessary). Since the norms of the zeros λk increase without
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bound in |k|, it follows that for sufficiently large |k|, the functions f(λ) and g(λ)
satisfy the hypotheses of Rouché’s Theorem. The result follows.

3. Characteristic Equations with k Delays

Proposition 2.1 can be extended to the case of multi-delay equations in a natural
way. For simplicity of notation, we restrict to the case of two delays. The
argument for k delays is similar.

For two delays τ1 and τ2, the (transcendental) characteristic equation is of
the form

∆(λ) = Pτ (λ) +Q1(λ)e−λτ1 +Q2(λ)e−λτ2 = 0 , (3.1)

where τ = (τ1, τ2).
Taking real and imaginary parts we obtain the underlying linear equation

of the form

[

ReP
ImP

]

=

[

E1 F1 E2 F2

F1 −E1 F2 −E2

]









X1

Y1

X2

Y2









= M









X1

Y1

X2

Y2









. (3.2)

As in Section 2, the matrix coefficient functions E1, E2, F1, F2 are functions
of (ρ, ω, τ ) determined by

Ei = −e−λτi ReQi, Fi = −e−λτi ImQi.

If rank(M) = 1, then in order for a solution to exist, it is necessary that
[

U

V

]

be in the real linear span of the column space of M . So, for each column
[

R

S

]

of M , the inner-product with the column vector

[

U

V

]

of the left-hand-side

must satisfy
[

U

V

] [

R

S

]

= ±
∥

∥

∥

∥

[

U

V

]
∥

∥

∥

∥

∥

∥

∥

∥

[

R

S

]
∥

∥

∥

∥

(3.3)

(since the rank of M(ω) is one, it is necessary and sufficient that this hold for
any one of the non-zero column vectors).

If rank(M) = 2, then for every

[

U

V

]

, there necessarily exist solutions









X1

Y1

X2

y2









to the linear equation (3.2).
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Suppose then that solutions to (3.2) exist. Using Gaussian elimination,
these solutions can be given explicitly by equations of the form

aiX1 + biY1 + ciX2 + diY2 + ei = 0, 1 ≤ i ≤ 2 , (3.4)

where the coefficients ai, . . . , ei are elementary combinations of E, F , G, H
from equation (3.2).

In order to obtain solutions of the form [cos(ωτ1), sin(ωτ1), cos(ωτ2) , sin(ωτ2)]
T ,

it is necessary also that for each solution [X1, Y1,X2, Y2] to (3.4) we have: (i)
X2

i + Y 2
i = 1, for i = 1, 2; and (ii) that the argument for each [Xi, Yi]

T be
equivalent to ωτimod2π for each i.

For (i), the solution set (3.4) is projected to the [Xi, Yi] coordinate plane
for each i = 1, 2. The distance from the i-th origin to this projected set must
then be less than or equal to one (since the solution set and its projections are
known from (3.4), this distance may be calculated using classical formulas from
coordinate geometry).

For (ii), (modulo periodicity) possible combinations of τ1 and τ2 must satisfy
Arg[Xi, Yi]

T ≡ ωτi, i = 1, 2. This is obtained if and only if [Xi, Yi]
T [cos(ωτi), sin(ωτi)] =

1, for i = 1, 2.
Note that, as in the case for one delay τ (Corollary 2.3), if X1 6= 0,X2 6= 0,

and the ratios Yi

Xi
, for i = 1, 2 are independent of (τ1, τ2) (for example, if the

coefficients of the characteristic equation polynomials do not depend explicitly
on delay factors), then for each i, critical delays τi may be obtained as explicit
multi-functions of ω 6= 0.

These results may be stated now for the general case.

Theorem 3.1. Suppose that a transcendental characteristic equation in-
volves k delays (τ1, τ2, . . . , τk) and is of the form

∆(λ)=P (λ) +Q1(λ)e−λτ1 +Q2(λ)e−λτ2 + · · · +Qk(λ)e−λτk = 0 . (3.5)

As in equation (3.2) for the case of two delays, consider the underlying
linear system obtained from the real and imaginary parts of the transcendental
characteristic equation ∆(λ) = 0:

[

U

V

]

=

[

E1 F1 · · · Ek Fk

F1 −E1 · · · Fk −Ek

]















X1

Y1
...
Xk

Yk















= M















X1

Y1
...
Xk

Yk















. (3.6)
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Here

[

U

V

]

=

[

ReP
ImP

]

and

[

Ei

Fi

]

=

[

−e−ρτ ReQi

−e−ρτ ImQi

]

for i = 1,

2, . . . , k.
Let T be the generic unit circle X2 + Y 2 = 1 in two real dimensions. Then

there exists solutions (ω, τ1, τ2, . . . , τk) of equation (3.6) of the form [Xi, Yi]
T =

[cos(ωτi), sin(ωτi)]
T , i = 1, 2, . . . , k if and only if:

(a) The affine subspace of R
2k at (ω, τ1, τ2, . . . , τk) determined by equation

(3.6) has non-empty intersection with the k-fold Cartesian product
k
∏

1
T ; and

(b) There are solutions

[

Xi

Yi

]

obtained from (a) that satisfy
[

Xi

Yi

] [

cos(ωτi)
sin(ωτi)

]

= 1, for all i = 1, 2, . . . , k. Equivalently, there are solutions

from (a) that satisfy the congruence system θi =Arg[Xi, Yi]
T ≡ ωτi mod 2π,

i = 1, 2, . . . , k.
Remark 3.2. (i) The full system of equations in Theorem 3.1 consists of

2k + 2 equations for k + 1 quantities (ω, τ1, τ2, . . . , τk): Two equations from
equation (3.6); k equations from (a); and k equations from (b). So, in general,
we can expect there to be situations where the solution set is over-determined
and empty.

(ii) It is sometimes useful to write the congruence system explicitly:

ωτ1 = θ1 + 2m1π ,

ωτ2 = θ2 + 2m2π ,
...
ωτk + θk + 2mkπ ,

(3.7)

for some integers m1,m2, . . . ,mk.
Note also that (k−1)k

2 derived equations may be obtained as follows: Con-

sider a pair i 6= j. The i-th equation gives ω = θi+2miπ
τi

. Substituting this into
the j-th equation, we obtain

(τjθi − τiθj) = (mj −mi) 2π . (3.8)

Example 3.3. Suppose that k = 2, and that the second delay τ2 = lτ1
is some integer multiple of τ1. If lθ1 − θ2 is not equivalent to 0 mod 2π, then
there is no solution. For, otherwise, after dividing out the common factor τ1,
(3.8) gives [θ1l − θ2] = − [lm1 −m2] 2π. Since l is an integer, this would be a
contradiction.
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Remark 3.4. For the case of one delay, it was pointed out in Remark 2.2
that if there is a solution to the characteristic equation, then M−1 [X,Y ]T must
be a unit vector. Theorem 3.1 may be used to formulate the analogous result
for k-delays. Indeed, for [X,Y]T = [X1, Y1 . . . Xk, Yk]

T , define

‖[X,Y]‖k−sup = sup
1≤i≤k

∥

∥

∥
[Xi, Yi]

T
∥

∥

∥
= sup

1≤i≤k

√

X2
i + Y 2

i .

If there is a solution to ∆(λ) = 0, then the set M−1 [U, V ]T has non-empty

intersection with the boundary of the ‖∗‖k−sup unit ball of
k
⊕
i=1

(

R2
)

.

Theorem 3.1 also can be used to obtain a generalization of the one-delay
formula |P |2 = |e−ρτQ|2 (see Remark 2.2).

Proposition 3.5. Let

P = [ReP, ImP ]T , Λi = [Xi, Yi]
T , Gi = [Ei, Fi]

T , i = 1, 2, . . . , k ,
E = [E1, E2, . . . , Ek] , F = [F1, F2, . . . , Fk] ,
X = [X1,X2, . . . ,Xk] , Y = [Y1, Y2, . . . , Yk] .

(3.9)
Furthermore, let

P 2 = P · P, E2 = E ·E, F 2 = F ·F, G2
i = Gi · Gi ,

G2 = E2 + F 2 =
k
∑

i=1
G2

i ,

and ‖[E,F]‖ = ‖[F,−E]‖ = ξ ,

(3.10)

where we use the canonical l2-norm on R2k to obtain ξ.
If there exist vectors Λi = (cos(ωτi), sin(ωτi)), i = 1, 2, . . . , k that yield a

solution to (3.6), then

ReP = kξ cos(θ+) , ImQ = kξ cos(θ−) , (3.11)

where cos(θ+) and cos (θ−) are the cosines for the angles in R2k between the
pairs [E,F] and [X,Y]; and [F,−E] and [X,Y] respectively.

Furthermore,

P 2 = G2 + 2

{

∑

i<j

(Gi · Gj) (Λi · Λj)

+
∑

i<j

det
[

Gi G
j

]

det
[

Λi Λj

]

}

. (3.12)
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Proof. First, rewrite (3.6) in block matrix form as

P =

[

E F

F −E

] [

X

Y

]

=

[ [

E F
]

·
[

X Y
]

[

F −E
]

·
[

X Y
]

]

.

The first formulas follow from the dot product in R2k and the fact that
∥

∥

[

X Y
]
∥

∥

2
=

k
∑

i=1
‖Λi‖2 =

k
∑

i=1
1 = k.

For the second formula, note that the block matrix equation just given
implies that

(ReP )2 = (E · X)2 + 2 (E ·X) (F ·Y) + (F ·Y)2

( ImP )2 = (F ·X) − 2 (F ·X) (E ·Y) + (E ·Y)2

Now observe the following: For each i = 1, 2, . . . , k: (a) X2
i +Y 2

i = 1 implies
that E2

i X
2
i +E2

i Y
2
i = E2

i ; and (b) The terms EiFiXiYi appear in both (ReP )2

and ( ImP )2, but with opposite signs. Adding the equations therefore gives

P 2 =
(

E2 + F 2
)

+ 2







∑

i<j

EiEj (XiXj + YiYj) +
∑

i<j

FiFj (YiYj +XiXj)







+ 2







∑

i<j

EiFj (XiYj − YiXj) +
∑

i<j

FiEj (YiXj −XiYj)







.

Collecting terms and using the symbols, G2,Gi and Λj , the result follows.

Note. The special case for a single delay is obtained by setting k = 1 and
using the symbol Q in place of G.

Corollary 3.6. Suppose that k = 2 and that Fi = 0, Ei 6= 0 for i = 1, 2. If
there exists a solution of (3.6) the form Λi = (cos(ωτi), sin(ωτj)), i = 1, 2, then

|P 2 − E2| ≤ 2|E1E2| . (3.13)

Proof. In this case, Gi = [Ei, 0]T and (3.12) becomes

P 2 = E2 + 2 (G1 ·G2) (Λ1 · Λ2)

+ 2det
[

G1 G2

]

det
[

Λ1 Λ2

]

. (3.14)
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Let θ12 be a representative angle between Λ1 and Λ2. Then, using det
[

G1 G2

]

=
0 and ‖Λi‖ = 1, we obtain

P 2 − E2 = 2E1E2 cos(θ12) . (3.15)

Taking the absolute value, the result follows.

Remark 3.7. For k = 2, Corollary 3.6 can be used in applications to-
ward solving the converse problem. Let Rθ be the rotation operator acting on
two dimensions. Every solution of (3.14) that consists of unit vectors Λ1,Λ2

is obtained from the pair

{

Rθ[1, 0]
T , Rθ[cos(θ12), sin(θ12)]

T

}

. Finally, as in

Theorem 3.1, impose the further criteria that ArgΛi ≡ ωτi, i = 1, 2.

Example 3.8. (Distinct Delays τ1 6= τ2) Suppose that a transcendental
equation is of the form

∆(λ) = a0 + a1e
−λτ1 + a2e

−λτ2 = 0 . (3.16)

If there is a purely imaginary root λ = iω, then

∣

∣a2
1 + a2

2 − a2
0

∣

∣ ≤ |2a1a2| . (3.17)

Proof. For this characteristic equation, Ei = −aie
−ρτi , Fi = 0 for i = 1, 2

and P = [a0, 0]T . Substitute into (2.8) and set ρ = 0.

Example 3.9. The characteristic equation in [14] is

λ+ a+ be−λτ1 + be−λτ2 = 0 , (3.18)

where the coefficients on the delay terms are equal to some non-zero real con-
stant b. In [14], the investigation focuses on the possible existence of purely
imaginary roots.

For λ = ρ+ iω, the real and imaginary parts of (3.18) give the system

−be−ρτ1X1 − be−ρτ2X2 = (ρ+ a) , be−ρτ1Y1 + be−ρτ2Y2 = ω . (3.19)

In this case, Ei = −be−ρτi , i = 1, 2 and P = [(a+ ρ) , ω]T . Evaluating
(3.13), and settingρ = 0, we obtain

∣

∣2b2 −
(

a2 + ω2
)
∣

∣ ≤
∣

∣2b2
∣

∣ .

This can be re-expressed as

0 ≤ ω2 ≤ 4b2 − a2 . (3.20)
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Note. In particular, if 4b2−a2 < 0, then there is no purely imaginary root,
for all delays τ1, τ2.

Example 3.10. In [7], the system of delay equations involves three delay
terms, τ1 = τ , τ2 = ξ and τ3 = τ+ξ = τ1+τ2. The transcendental characteristic
equation is

∆(λ) =
[

λ2 + aλ+ b
]

+ [cλ+ p] e−τ1λ + [dλ+ q] e−τ2λ + re−τ3λ , (3.21)

where a, b, c, p, q, r are real constants.

When there are three delay terms, (2.7) yields

∣

∣P 2 −G2
∣

∣ ≤ 2

{

|G1G2| + |G1G3| + |G2G3| +
∣

∣

∣
det

[

G1 G
2

]
∣

∣

∣

+
∣

∣det
[

G1 G3

]∣

∣ +
∣

∣det
[

G2 G3

]∣

∣

}

. (3.22)

Consequently, if there is a purely imaginary root λ = iω of the characteristic
equation in [7], then

(

−ω2 + b
)2

+ (aω)2

≤ 2
{∣

∣pq + cdω2
∣

∣ + |pr| + |qr| + |pd− cq| + |rω (c+ d)|
}

. (3.23)

4. Hopf Bifurcation

Much as for parameterization by a single real variable, in the multi-delay system
we may enquire into the stability profile when there is a purely imaginary root
λτ = iωτ , τ = (τ1, . . . , τk) . It turns out that when k ≥ 2, for all non-singular
cases there is a Hopf bifurcation (see Theorem 4.6 below). To see this requires
adapting the Hopf Bifurcation Theorem to the k-fold parameterization given

by τ = (τ1, . . . , τk). Key quantities to be determined are S =sign
[

Re ∂λ
∂τi

]

, i =

1, ..., k. As is well known, these may be obtained through implicit differentiation
of the defining characteristic equation (3.5).

For a first illustration, we look to Example 3.8 (above), where k = 2 and
the coefficients of the characteristic equation (3.16) are arbitrary but constant.
Theorem 4.4 (below) regards this situation, and in preparation for that we start
with various calculations.
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To evaluate the partial derivatives ∂λ
∂τ1

and ∂λ
∂τ2

, implicit differentiation yields

∂λ

∂τ1
=

−λa1e
−λτ1

a1τ1e−λτ1 + a2τ2e−λτ2
,

∂λ

∂τ2
=

−λa2e
−λτ2

a1τ1e−λτ1 + a2τ2e−λτ2
.

(4.1)

At a purely imaginary root λ = iω, these equations become

∂λ

∂τ1
=

1

τ1

−iω
[(

1 +
a2τ2

a1τ1
cos(ω∆τ)

)

+ i

(

a2τ2

a1τ1
sin(ω∆τ)

)]

[

(

1 +
a2τ2

a1τ1
cos(ω∆τ)

)2

+

(

a2τ2

a1τ1
sin(ω∆τ)

)2
] , (4.2)

where ∆τ = τ2 − τ1, and

∂λ

∂τ2
=

1

τ2

−iω
[(

1 +
a1τ1

a2τ2
cos(ω∆̃τ)

)

+ i

(

a1τ1

a2τ2
sin(ω∆̃τ)

)]

[

(

1 +
a1τ1

a2τ2
cos(ω∆̃τ)

)2

+

(

a1τ1

a2τ2
sin(ω∆̃τ)

)2
] , (4.3)

where ∆̃τ = τ1 − τ2.
We now obtain

sign Re
∂λ

∂τ1

= sign























1

τ1

ω
a2τ2

a1τ1
sin(ω∆τ)

[

(

1 +
a2τ2

a1τ1
cos(ω∆τ)

)2

+

(

a2τ2

a1τ1
sin(ω∆τ)

)2
]























, (4.4)

and

sign Re
∂λ

∂τ2

= sign























1

τ2

ω
a1τ1

a2τ2
sin(ω∆̃τ)

[

(

1 +
a1τ1

a2τ2
cos(ω∆̃τ)

)2

+

(

a1τ1

a2τ2
sin(ω∆̃τ)

)2
]























. (4.5)
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Since the sine function is odd and the delays are strictly positive, we obtain

sign Re
∂λ

∂τ1
= sign

[

a2

a1
(∆τ)

]

, (4.6)

and

sign Re
∂λ

∂τ2
= sign

[

a1

a2

(

∆̃τ
)

]

. (4.7)

Since ∆τ = −∆̃τ , we have that

sign Re
∂λ

∂τ1
= −sign Re

∂λ

∂τ2
. (4.8)

Next we consider directional derivatives in τ1 and τ2. Specifically, we seek
the real part of the directional derivative Dvλ, in the (τ1, τ2)-parameter direc-
tion given by a unit vector v = [cos(φ), sin(φ)].

Write τ = (τ1, τ2) and let λ = λ(τ(s)) = ρ(τ(s)) + iω(τ(s)) be a smooth
path of zeros, where the delays are parameterized by an interval of real numbers
s. Evaluating the derivative with respect to s, we obtain

dλ

ds
=

d

ds
[ρ(τ(s)) + iω(τ(s))] =

d

ds
ρ(τ(s)) +

d

ds
iω(τ(s))

= ∇τ (ρ)
dτ

ds
+ i∇τ (ω)

dτ

ds
.

Consequently,

Re
dλ

ds
= ∇τ (ρ)

dτ

ds
= ∇τ (Reλ)

dτ

ds
=

d

ds
Reλ . (4.9)

In other words, to determine the sign of the real part of the directional
derivative, it is enough to calculate the sign of the directional derivative of the
real part.

For Theorem 4.4, the following notation will be used: Let a2τ2
a1τ1

= α =

α̃−1, θ = ω∆τ and θ̃ = ω∆̃τ = −θ (see (4.2) and (4.3)).

Theorem 4.4. Let all terms be defined as above. Suppose that λ = iω is an
isolated root of the transcendental characteristic equation, with a conjugagate
root −iω; that the remaining roots have strictly negative real parts; that ω 6= 0,
∆τ 6= 0 and that sin(ω∆τ) 6= 0. Suppose also that λ(τ(s)) is a smooth path
in the complex plane such that λ(τ(0)) = iω. Write the unit tangent vector of
τ(s) at s = 0 by v = (cos(φ), sin(φ)). Then, for all φ that satisfy

tan(φ) 6=
τ2α

(

1 + 2α̃ cos(θ̃) + α̃2
)

τ1α̃ (1 + 2α cos(θ) + α2)
, (4.10)
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there is a Hopf bifurcation as λ(τ) passes through the purely imaginary root
λ = iω = iωc.

Note. Since θ̃ = −θ, we have cos(θ̃) = cos(θ).

Proof. The proof is a calculation, for it is enough to show that the real part
of the directional derivative is not zero. From the remarks above,

ReDv(λ) =

(

Re
∂λ

∂τ1
, Re

∂λ

∂τ2

)

· v .

Substitute from (4.4) and (4.5) to obtain

ReDv(λ) = ω∆τ





α cos(ϕ)

τ1 (1 + 2α cos(θ) + α2)
− α̃ sin(ϕ)

τ2

(

1 + 2α̃ cos(θ̃) + α̃2
)



 .

By hypothesis, ω∆τ 6= 0. Therefore, ReDv(λ) = 0 if and only if tan(ϕ) is
given by the right hand side of (4.10), and the result
follows.

Remark 4.5. It follows that an empirical system that is approximated by
a model whose transcendental characteristic equation is of the form (3.16) will
in most cases be unstable at any non-zero purely imaginary root satisfying the
hypotheses of the theorem. For then there can be Hopf bifurcation in all delay-
directions but possibly two. These two exceptional directions are mathematical
but, other things being equal, rarely could be maintained in an empirical setting.

For a general result, consider a transcendental characteristic equation of the
form ∆(λ)=P (λ) +Q1(λ)e−λτ1 +Q2(λ)e−λτ2 + · · ·+Qk(λ)e−λτk = 0, where as
above τ(s) = (τ1(s), τ1(s), . . . τk(s)) is a path in the τ -parameter space.

Again, we obtain the gradient ∇τ (λ) =
(

∂λ
∂τ1
, ∂λ

∂τ2
, . . . , ∂λ

∂τk

)

by implicit dif-

ferentiation. A straightforward calculation gives that for each j = 1, . . . , k

∂λ

∂τj
=

λQje
−λτj

[

dP
dλ +

k
∑

m=1

(

dQm

dλ −Qmτm

)

e−λτm

] .

We are assuming that the analytic denominator is not zero. The zeros of
the denominator are, of course, isolated, for otherwise the analytic function
would be identically zero.

Now, from (4.9) we have the general result that

Re

(

d

ds
λ(τ(s))

)

= Re

(

∇τ (λ) · dτ
ds

)

= (Re∇τλ) · dτ
ds

.
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Therefore, the real quantity Re
(

d
dsλ(τ(s))

)

is of the form A1
dτ1
ds +A2

dτ2
ds +

· · ·+Ak
dτk

ds , where Aj = Aj (λ(τ)) are real functions for j = 1, 2, . . . , k. Hence,

Re
(

d
dsλ(τ(s))

)

= 0 if and only if A1
dτ1
ds +A2

dτ2
ds +· · ·+Ak

dτk

ds = 0. This equation
determines a subspace Bτ(0) of the τ -parameter tangent space at τ(0). For
Ai = Ai (τ(0)) not the zero-vector, the dimension of the subspace is k − 1.

This leads to the following theorem.

Theorem 4.6. Let all terms be defined as above and suppose that Re∇τλ =
∇τ Reλ 6= 0 at τ(0). Then for each path τ(s) whose tangent vector at s = 0
is in the set theoretic complement of Bτ(0) = {v |v · Re (∇τλ) = 0}, there is a
Hopf bifurcation as λ (τ(s)) passes through the purely imaginary point λ (τ(0)).

5. Concluding Remarks

The transcendental characteristic ∆(λ) = 0, λ = ρ + iω is equivalent to the
point-wise linear factorization P = MZ,where

P = [ ReP, ImP ]T , M =

[

E1 F1

F1 −E1
· · · · · · Ek Fk

Fk −Ek

]

and
Z =

[

cos(ωτ1) sin(ωτ1) · · · · · · cos(ωτk) sin(ωτk)
]T

.

Hence, a solution to the characteristic equation exists if and only if there ex-
ists (ρ, ω, τ ) such that Z (ω, τ ) is in the inverse image M−1 (ρ, ω , τ)P (ρ, ω, τ ).

Equivalently, there is a solution if and only if M−1P∩
k
∏

i=1
T 6= ∅ (T the generic

unit circle in two variables), and at least one of the elements of this inverse im-
age has the appropriate orientation with respect to the k-tuple (ωτ1, . . . , ωτk).

As was illustrated in Section 3 and Section 4, adverting to this structure
can reveal detailed features of the zero set of the characteristic equation; and
can be used as the basis for a general approach that will, for instance, be useful
in the analysis of multi-delay equations arising in the applied sciences.

We conclude the paper by indicating what we think would be worthwhile
further related lines of enquiry that emerge naturally from the factorization.

1. Investigate the geometric structure (both commutative and non-commutative)
of the field of linear maps associated with a transcendental characteristic equa-
tion.

2. Determine appropriate sub-classes of analytic functions that contain
transcendental characteristic functions as key representatives.
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3. Investigate possible generalizations of the k-circle map

[cos(ωτ1), sin(ωτ2), . . . , cos(ωτk), sin(ωτk)]
T ,

with formulations that include algebraic structure. For example, suppose that
Ψ is a set of functions f (λ, τ) : C → C, parameterized by the real k-parameter
τ = (τ1, . . . , τk) , τi ∈ R for i = 1, . . . , k (the set Ψ could be a singleton, or
a set with algebraic structure). Investigate cases where there would be a
canonically associated field of mutually orthogonal projections Pi : R

2k → R
2k

(dimPi = 2) that would be linked to a factorization of the form [Re f, Im f ]T =
M (λ, τ )Z (ω, τ). Identify circumstances where there would be a map Z :
R

2 × R
k → R

2k with the property that for each i = 1, . . . , k, we would have
Zi (ω, τi) = Z (ω, (0, . . . , 0, τi, 0, . . . , 0)) with the property that PiZi = Zi.

4. Investigate transformations of functions (geometric and more general
operators) that (a) leave the classes in 2. invariant; (b) leave the congruence
relations (3.7) invariant; and (c) more generally, leave selected relations between
the delay terms invariant (in [7], for example, τ3 = τ1 + τ2).

5. Investigate transformations that leave (or do not leave) the parameterized
zero sets (spectra) of a characteristic function invariant.

6. Investigate the natural tensor and/or cross-product structures τ ×α X

that pertain to multi-delay models.

7. In empirical processes, multi-delays can occur at different scales. For
instance, in mathematical biology, a first delay in seconds or hours could refer
to an intracellular process; while a second delay of months or even years could
refer to a population density. So, investigate multi-delay models as a source of
multi-scale models, as described in [16].

8. In view of Remark 4.5 and Theorem 4.6, investigate bifurcation (a)
at purely imaginary roots that are critical points of the delay gradient ∇τλ;
and (b) for parameterization paths whose tangent vector at the isolated purely
imaginary root is tangent to the “boundary space” Bτ(0).
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