A REGULARIZED TRACE FORMULA FOR
A DIFFERENTIAL OPERATOR OF SECOND ORDER WITH
UNBOUNDED OPERATOR COEFFICIENTS GIVEN IN
A FINITE INTERVAL

Erdal Gül
Department of Mathematics
Faculty of Arts and Sciences
Yıldız Technical University
Davutpaşa, 34210, Istanbul, TURKEY

Abstract: In this work, a formula for the regularized trace of second order
differential operator given in a finite interval which has unbounded operator
coefficients is found.

AMS Subject Classification: 47A70, 47A55
Key Words: Hilbert space, self-adjoint operator, kernel operator, spectrum,
resolvent

1. Introduction

Let H be a separable Hilbert space and let $H_1 = L_2(H;[0,\pi])$ denotes the set
of all measurable functions f with values in H and such that

$$\int_0^\pi \|f(x)\|^2_H \, dx < \infty.$$

We consider the operators L_0 and L in H_1 which are formed by the
differential expressions

$$l_0(y) = -y''(x) + Ay(x) \quad \text{and} \quad l(y) = -y''(x) + Ay(x) + Q(x)y(x)$$

and the same boundary conditions $y(0) = y'(\pi) = 0$ respectively. Suppose that
A and $Q(x)$ in the above expressions satisfy the following conditions:
(1) $A : D(A) \to H$ is a self adjoint operator. Moreover, $A \geq I$ and $A^{-1} \in \sigma_{\infty}(H)$, where I is an identity operator in H and $\sigma_{\infty}(H)$ is the set of all compact operators from H to H.

(2) For every $x \in [0, \pi]$, $Q(x) : H \to H$ is a self-adjoint compact operator. It is also a kernel operator $(Q(x) \in \sigma_1(H))$.

(3) The functions $\|Q^{(i)}(x)\|_{\sigma_1(H)}$ $(i = 0, 1, 2)$ are bounded and measurable in the interval $[0, \pi]$.

(4) For every $f \in H$, \[\int_0^\pi (Q(x)f, f)_H \, dx = 0. \]

We denote the norms in H and H_1 by $\|\cdot\|_H$ or $\|\cdot\|$ and $\|\cdot\|_1$ respectively and denote the sum of eigenvalues of a kernel operator K by $\text{tr}K = \text{trace}K$. Moreover, $\sigma_1(H)$ denotes the space of kernel operators from H to H as in Cohberg and Krein [6].

The regularized trace formulas of scalar differential operators are studied by Gelfand and Levitan [9], Dikiy [7], Halberg and Kramer [12] and in many other works. In particular, the list of the works on this subject is given in Levitan Sargsyan [13] and Fulton and Prues [8].

The trace formulas for differential operators with operator coefficients are investigated by Adıgüzeloğlu [1], Chalilova [5], Maksudov et al [14], Maksudov et al [15], Adıgüzeloğlu et al [2], Albayrak et al [4], Gül [11], Adıgüzeloğlu and Bakși [3].

In this work we will firstly show how the concept of regularized trace for operator L is constructed and later will obtain a formula for this regularized trace.

2. Definition of Regularized Trace for Operator L

Let $\gamma_1 \leq \gamma_2 \leq \cdots \leq \gamma_n \leq \cdots$ be the eigenvalues of the operator A and $\varphi_1, \varphi_2, \cdots, \varphi_n, \cdots$ be the orthonormal eigenvectors corresponding to these eigenvalues.

Moreover, D_0 denotes the set of the functions $y(x)$ in H_1 satisfying the conditions:

(1°) $y(x)$ has continuous derivative of the second order with respect to the norm in the space H in the interval $[0, \pi]$.

(2°) $Ay(x)$ is continuous with respect to the norm in the space H.

(3°) $y(0) = y'(\pi) = 0$.

Here D_0 is dense in H_1 and the operator $L'_0 : D_0 \to H_1$ defined by $L'_0 = l_0(y)$ is symmetric. The eigenvalues of this operator are $(\frac{1}{2} + k)^2 + \gamma_j$ ($k = 0, 1, 2, \cdots$).
0, 1, 2, · · · ; j = 1, 2, · · ·) and the orthonormal eigenvectors corresponding to these eigenvalues are $M_k \sin(k + \frac{1}{2})x \cdot \varphi_j \quad (k = 0, 1, 2, · · · ; j = 1, 2, · · ·)$, where $M_k = \sqrt{\frac{2}{\pi}}$ for $k = 0, 1, 2, · · ·$.

We can see that the orthonormal eigenvector system of the symmetric operator L'_0 is an orthonormal basis in the space H_1. Moreover, since this system is closed, the operator $L_0 = \overline{L'_0}$ is self-adjoint, Smirnov [17].

On the other hand, because of the fact that the operator $Q(x)$ satisfies condition (3), we can show that $Q(x)$ is a bounded, self-adjoint operator from H_1 to H_1. In this case, the operator $L = L_0 + Q$ will be a self-adjoint operator from $D(L) = D(L_0)$ to H_1.

Let R_0^0 and R_λ be resolvents of the operators L_0 and L respectively

$$R_\lambda^0 = (L_0 - \lambda I)^{-1}, \quad R_\lambda = (L - \lambda I)^{-1}$$

and let $\mu_1 \leq \mu_2 \leq \cdots \leq \mu_n \leq \cdots$ be the eigenvalues of operator L_0. Here every eigenvalue is repeated according to multiplicity number. Since the eigenvalues of operator L_0 are $(\frac{1}{2} + k)^2 + \gamma_j \quad (k = 0, 1, 2, · · · ; j = 1, 2, · · ·)$ and $\lim_{j \to \infty} \gamma_j = \infty$, we have $\lim_{n \to \infty} \mu_n = \infty$.

This means that the limit of the sequence of eigenvalues $\left\{ \frac{1}{\mu_n - \mu} \right\}_{n=1}^{\infty}$ of operator R_μ^0 is zero. That is,

$$\lim_{n \to \infty} \frac{1}{\mu_n - \mu} = 0 \quad (\mu \neq \mu_n; \quad n = 1, 2, · · ·).$$

On the other hand, for every real μ which is not an eigenvalue of L_0, the operator R_μ^0 is self-adjoint and the system of orthonormal eigenfunctions, $M_k \sin(k + \frac{1}{2})x \cdot \varphi_j \quad (k = 0, 1, 2, · · · ; j = 1, 2, · · ·)$ is complete. In this case, it is well known that R_μ^0 is a compact operator, Smirnov [17]. From the formula

$$R_\lambda^0 - R_\mu^0 = (\lambda - \mu)R_\lambda R_\mu^0.$$

It is obtained the compactness of operator R_λ^0 for every real number $\lambda \neq \mu_n \quad (n = 1, 2, · · ·)$. Therefore, the operator L_0 has pure discrete spectrum. Since the operator Q is a bounded self-adjoint operator, the spectrum of operator $L = L_0 + Q$ is also pure discrete, Smirnov [17].

Let $\lambda_1 \leq \lambda_1 \leq \cdots \leq \lambda_1 \leq \cdots$ be the eigenvalues of operator L. For every real μ which is not an eigenvalue of L, we have

$$\lim_{n \to \infty} \frac{1}{\lambda_n - \mu} = 0.$$
Thus self-adjoint operator $R_\mu = (L - \mu I)^{-1}$ is a compact operator, Naimark [16]. From the relation

$$R_\lambda - R_\mu = (\lambda - \mu)R_\lambda R_\mu,$$

we obtain that for every $\lambda \neq \lambda_n (n = 1, 2, \cdots)$, R_λ is a compact operator.

Let $N(\lambda)$ be the number of eigenvalues of operator L_0 which is not greater than a positive number λ.

If $\gamma_j \sim a_j^\alpha$ as $j \to \infty$ ($a > 0$, $\alpha > 2$) that is, if

$$\lim_{j \to \infty} \frac{\gamma_j}{a_j^\alpha} = 1$$

then it can be found that $N(\lambda) \sim d\lambda\frac{2+\alpha}{\alpha}$, where

$$d = \frac{2}{\alpha a^\alpha} \int_0^\pi \cos^2 t \sin^2 \frac{\alpha-1}{\alpha} t \, dt$$

and so

$$\mu_n \sim d_0 n^{\frac{2}{2+\alpha}} \text{ as } j \to \infty \quad (d_0 = d\frac{2}{2+\alpha}) \quad (2.1)$$

is found, Gorbacuk and Gorbacuk [10].

Now, for the eigenvalues of the operator $L = L_0 + Q$, an asymptotic formula can be found.

Since Q is a self-adjoint operator from H_1 to H_1 for every $y \in H_1$ we have

$$|(Qy, y)_1| \leq \|Qy\|_1\|y\|_1 \leq \|Q\|_1\|y\|^2_1,$$

or

$$(-\|Q\|y, y)_1 \leq (Qy, y)_1 \leq (\|Q\|y, y)_1.$$

This means that

$$-\|Q\|_1 I \leq Q \leq \|Q\|_1 I.$$

And so

$$L_0 - \|Q\|_1 I \leq L = L_0 + Q \leq L_0 + \|Q\|_1 I.$$

In this case, it is well-known that

$$\mu_n - \|Q\|_1 \leq \lambda_n \leq \mu_n + \|Q\|_1,$$

Smirnov [17]. According to this, we can write

$$1 - \frac{\|Q\|_1}{\mu_n} \leq \frac{\lambda_n}{\mu_n} \leq 1 + \frac{\|Q\|_1}{\mu_n}.$$
By applying limit to each side of this inequality and by considering the equality
\[
\lim_{n \to \infty} \frac{\mu_n}{d_0 n^{2/\alpha}} = 1, \quad \text{we obtain} \quad \lim_{n \to \infty} \frac{\lambda_n}{\mu_n} = 1.
\]
Thus, we have
\[
\lim_{n \to \infty} \frac{\lambda_n}{d_0 n^{2/\alpha}} = \lim_{n \to \infty} \left(\frac{\lambda_n}{\mu_n} \cdot \frac{\mu_n}{d_0 n^{2/\alpha}} \right) = \lim_{n \to \infty} \frac{\lambda_n}{\mu_n} \lim_{n \to \infty} \frac{\mu_n}{d_0 n^{2/\alpha}} = 1,
\]
or as \(n \to \infty\), \(\lambda_n \sim d_0 n^{2/\alpha}\).

Taking together with this last expression and relation (2.1) we write, if \(\gamma_j \sim a j^\alpha \quad (a, \alpha > 0)\) then as \(n \to \infty\)
\[
\mu_n, \lambda_n \sim d_0 n^{2/\alpha}.
\]

By using this formula, it can be showed that the sequence \(\{\mu_n\}_{n=1}^\infty\) has a subsequence \(\{\mu_{n_m}\}_{m=1}^\infty\) such that
\[
\mu_k - \mu_{n_m} \geq d_1 \left(k^{2/\alpha} - n_m^{2/\alpha} \right) \quad (k = n_m, n_m + 1, n_m + 2, \cdots), \quad (2.2)
\]
where \(d_1\) is a positive constant.

The limit given in the form
\[
\lim_{m \to \infty} \sum_{k=1}^{n_m} (\lambda_k - \mu_k)
\]
is called the regularized trace of operator \(L\) such that the sequence \(\{\mu_n\}_{n=1}^\infty\) has a subsequence \(\{\mu_{n_m}\}_{m=1}^\infty\) satisfying the inequality (2.2).

If \(\gamma_j \sim a j^\alpha\) as \(j \to \infty\) \((a > 0, \alpha > 2)\) then by using the inequality (2.2) we obtain that
\[
\lambda_{n_m} < \frac{1}{2} \left(\mu_{n_{m+1}} + \mu_{n_m} \right) < \lambda_{n_m} + 1
\]
for large values of \(m\).

Since \(\lambda_n, \mu_n \sim d n^{2/\alpha}\), if \(\alpha > 2\) and \(\lambda \neq \lambda_k \quad (k = 1, 2, \cdots)\) then the series \(\sum_{k=1}^{\infty} \left(\frac{\lambda}{\lambda_k - \lambda} \right)\) and \(\sum_{k=1}^{\infty} \left(\frac{\lambda}{\mu_k - \lambda} \right)\) are convergent on the circle \(|\lambda| = b_m = 2^{-1}(\mu_{n_m} + \mu_{n_{m+1}})\) for large values of \(m\). Moreover, since
\[
\lambda_k, \mu_k \sim d_0 k^{2/\alpha} \quad \text{as} \quad k \to \infty
\]
if $\alpha > 2$ and $\lambda \neq \lambda_k, \mu_k \ (k \geq 1, 2, \cdots)$ then the series $\sum_{k=1}^{\infty} |\mu_k - \lambda|^{-1}$ and $\sum_{k=1}^{\infty} |\lambda_k - \lambda|^{-1}$ are convergent. Therefore R_λ^0 and R_λ are the kernel operators and we find that

$$\text{tr}(R_\lambda - R_\lambda^0) = \text{tr}R_\lambda - \text{tr}R_\lambda^0 = \sum_{k=1}^{\infty} \left(\frac{1}{\lambda_k - \lambda} - \frac{1}{\mu_k - \lambda} \right),$$

see Cohberg and Krein [6].

If we multiply this equation with $\frac{\lambda}{2\pi i}$ and integrate on the circle $|\lambda| = b_m = 2^{-1}(\mu_{n_m} + \mu_{n_m+1})$ then we obtain that

$$\frac{1}{2\pi i} \int_{|\lambda| = b_m} \lambda \text{tr}(R_\lambda - R_\lambda^0) d\lambda$$

$$= \frac{1}{2\pi i} \left(\int_{|\lambda| = b_m} \sum_{k=1}^{\infty} \left(\frac{\lambda}{\lambda_k - \lambda} \right) d\lambda - \int_{|\lambda| = b_m} \sum_{k=1}^{\infty} \left(\frac{\lambda}{\mu_k - \lambda} \right) d\lambda \right),$$

or

$$\frac{1}{2\pi i} \int_{|\lambda| = b_m} \lambda \text{tr}(R_\lambda - R_\lambda^0) d\lambda$$

$$= - \sum_{k=1}^{\infty} \left\{ \frac{1}{2\pi i} \int_{|\lambda| = b_m} \frac{\lambda}{\lambda - \lambda_k} d\lambda - \frac{1}{2\pi i} \int_{|\lambda| = b_m} \frac{\lambda}{\lambda - \mu_k} d\lambda \right\}. \quad (2.3)$$

Since $\mu_{n_m} < b_m < \mu_{n_m+1}$ it can be shown that for large values of m

$$\{\lambda_k, \mu_k\}_{1}^{n_m} \subset K(0, b_m) = \{ \lambda : |\lambda| < b_m \} \quad (2.4)$$

and

$$\lambda_k, \mu_k \in \overline{K(0, b_m)} = \{ \lambda : |\lambda| < b_m \} \quad (k \geq n_m + 1).$$

Therefore,

$$\frac{1}{2\pi i} \int_{|\lambda| = b_m} \frac{\lambda}{\lambda - \mu_k} d\lambda = \begin{cases} \mu_k & \text{if } k < n_m, \\ 0 & \text{if } k \geq n_m + 1, \end{cases}$$
and
\[
\frac{1}{2\pi i} \int_{|\lambda|=b_m} \frac{\lambda d\lambda}{\lambda - \lambda_k} = \begin{cases}
\lambda_k & \text{if } k < n_m, \\
0 & \text{if } k \geq n_m + 1.
\end{cases}
\]

Thus, the equation (2.3) comes to the form
\[
\sum_{k=1}^{n_m} (\lambda_k - \mu_k) = -\frac{1}{2\pi i} \int_{|\lambda|=b_m} \lambda \text{tr}(R_\lambda - R^0_\lambda) d\lambda.
\] (2.5)

It is known that \(R_\lambda = R^0_\lambda - R_\lambda Q R^0_\lambda \) for \(\lambda \in \rho(L) \cap \rho(L_0) \). From here, for any natural number \(p \geq 2 \) we obtain the equality
\[
R_\lambda - R^0_\lambda = \sum_{j=1}^{p} (-1)^j R^0_\lambda (QR^0_\lambda)^j + (-1)^{p+1} R_\lambda (QR^0_\lambda)^{p+1}.
\]

If we substitute this expression in (2.5) we find that
\[
\sum_{k=1}^{n_m} (\lambda_k - \mu_k) = \frac{1}{2\pi i} \int_{|\lambda|=b_m} \lambda \text{tr} \left[\sum_{j=1}^{p} (-1)^{j+1} R^0_\lambda (QR^0_\lambda)^j + (-1)^p R_\lambda (QR^0_\lambda)^{p+1} \right] d\lambda,
\]
or
\[
\sum_{k=1}^{n_m} (\lambda_k - \mu_k) = \sum_{j=1}^{p} D_{mj} + D_{m}^{(p)},
\] (2.6)

where
\[
D_{mj} = \frac{(-1)^{j+1}}{2\pi i} \int_{|\lambda|=b_m} \lambda \text{tr} [R^0_\lambda (QR^0_\lambda)^j] d\lambda,
\] (2.7)
\[
D_{m}^{(p)} = \frac{(-1)^p}{2\pi i} \int_{|\lambda|=b_m} \lambda \text{tr} [R_\lambda (QR^0_\lambda)^{p+1}] d\lambda.
\] (2.8)

For every natural number \(j \), it can be shown that the operator function \((QR^0_\lambda)^j\) is analytic according to the norm in \(\sigma_1(H_1) \) in the resolvent region \(\rho(L_0) \) of the operator \(L_0 \). Moreover,
\[
\text{tr}[R^0_\lambda (QR^0_\lambda)^j] = \text{tr}[(QR^0_\lambda)^{j-1}(Q(R^0_\lambda)^2)] = \text{tr}[(QR^0_\lambda)^{j-1} \frac{d}{d\lambda} (QR^0_\lambda)],
\]
\[
\text{tr}\left\{ \frac{d}{d\lambda} [(QR^0_\lambda)^j] \right\} = j\text{tr}[(QR^0_\lambda)^{j-1} \frac{d}{d\lambda} (QR^0_\lambda)].
\]
From the last two relations one obtains
\[\operatorname{tr}[R_\lambda^0(QR_\lambda^0)^j] = \frac{1}{j} \operatorname{tr}\left\{ \frac{d}{d\lambda}[(QR_\lambda^0)^j]\right\}. \]

If this expression is substituted in (2.7), then we find that
\[D_{mj} = \frac{(-1)^j+1}{2\pi ij} \int_{|\lambda|=b_m} \lambda \operatorname{tr}\left\{ \frac{d}{d\lambda}[(QR_\lambda^0)^j]\right\} d\lambda \]
\[= \frac{(-1)^j}{2\pi ij} \int_{|\lambda|=b_m} \operatorname{tr}\left\{ \frac{d}{d\lambda}[\lambda(QR_\lambda^0)^j - (QR_\lambda^0)^j]\right\} d\lambda \]
\[= \frac{(-1)^j}{2\pi ij} \int_{|\lambda|=b_m} \operatorname{tr}[(QR_\lambda^0)^j] d\lambda + \frac{(-1)^j+1}{2\pi ij} \int_{|\lambda|=b_m} \frac{d}{d\lambda}\operatorname{tr}\{\lambda(QR_\lambda^0)^j]\} d\lambda. \]

By using (2.4), we can show that
\[\int_{|\lambda|=b_m} \frac{d}{d\lambda}\operatorname{tr}\{\lambda(QR_\lambda^0)^j]\} d\lambda = 0. \]

Because of this, we obtain that
\[D_{mj} = \frac{(-1)^j}{2\pi ij} \int_{|\lambda|=b_m} \operatorname{tr}[(QR_\lambda^0)^j] d\lambda. \quad (2.9) \]

Let \(\{\psi_q(x)\}_{q=1}^\infty \) be the system of orthonormal eigenvectors corresponding to the eigenvalues \(\{\mu_q(x)\}_{q=1}^\infty \) of operator \(L_0 \) respectively. Since for \(k = 0, 1, 2, \cdots \) and \(j = 1, 2, \cdots \)
\[M_k \sin\left(\frac{1}{2} + k\right) x \varphi_j \]
is the system of orthonormal eigenvectors corresponding to the eigenvalues
\[\left(\frac{1}{2} + k\right)^2 + \gamma_j \] of operator \(L_0 \) respectively, we have
\[\psi_q(x) = M_{k_q} \sin\left(\frac{1}{2} + k_q\right) x \varphi_{q_j} \quad (q = 1, 2, \cdots) \quad (2.10) \]

Theorem 2.1. *If the operator function \(Q(x) \) satisfies the conditions (2), (3) and (4) and if as \(j \to \infty \) \(\gamma_j \sim a_j^0 \) \((0 < a < \infty, 2 < \alpha < \infty) \) then*
\[\lim_{m \to \infty} D_{m1} = \frac{1}{4}[\operatorname{tr}Q(\pi) - \operatorname{tr}Q(0)]. \]
Proof. From equation (2.9) we have

\[D_{m1} = -\frac{1}{2\pi i} \int_{|\lambda|=b_m} \text{tr}(QR^0_\lambda) \, d\lambda. \tag{2.11} \]

Since, for every \(\lambda \in \rho(L_0) \), \(QR^0_\lambda \) is a kernel operator and \(\{\psi_q(x)\}_{q=1}^{\infty} \) is an orthonormal basis of the space \(H_1 \) then the equality

\[\text{tr}(QR^0_\lambda) = \sum_{q=1}^{\infty} (QR^0_\lambda \psi_q, \psi_q) \]

holds.

If we substitute this expression in (2.11) and consider the relation

\[R^0_\lambda \psi_q = (L_0 - \lambda I)^{-1} \psi_q = (\mu_q - \lambda)^{-1} \psi_q, \]

we obtain that

\[D_{m1} = -\frac{1}{2\pi i} \int_{|\lambda|=b_m} \left[\sum_{q=1}^{\infty} (QR^0_\lambda \psi_q, \psi_q) \right] \, d\lambda \]

\[= -\frac{1}{2\pi i} \int_{|\lambda|=b_m} \left[\sum_{q=1}^{\infty} \frac{1}{\mu_q - \lambda} (Q \psi_q, \psi_q) \right] \, d\lambda = \sum_{q=1}^{\infty} (Q \psi_q, \psi_q) \frac{1}{2\pi i} \int_{|\lambda|=b_m} \frac{d\lambda}{\lambda - \mu_q}. \]

From (2.10) and by using the equality

\[\frac{1}{2\pi i} \int_{|\lambda|=b_m} \frac{d\lambda}{\lambda - \mu_q} = \begin{cases} 1, & \text{if } q \leq n_m, \\ 0, & \text{if } q > n_m, \end{cases} \]

we find that

\[D_{m1} = \sum_{q=1}^{n_m} (Q \psi_q, \psi_q) = \sum_{q=1}^{n_m} \int_0^\pi (Q(x) \psi_q(x), \psi_q(x)) \, dx \]

\[= \sum_{q=1}^{n_m} \int_0^\pi (Q(x) M_{k_q} \sin \left(\frac{1}{2} + k \right) x \varphi_j, M_{k_q} \sin \left(\frac{1}{2} + k \right) x \varphi_j) \, dx \]

\[= \sum_{q=1}^{n_m} M_{k_q}^2 \int_0^\pi \sin^2 \left(\frac{1}{2} + k_q \right) x (Q(x) \varphi_j, \varphi_j) \, dx \]

\[= \sum_{q=1}^{n_m} M_{k_q}^2 \int_0^\pi \sin^2 \left(\frac{1}{2} + k_q \right) x (Q(x) \varphi_j, \varphi_j) \, dx \]
\[E. \text{ G"ul} \]

\[\sum_{q=1}^{n_m} M_{k_q}^2 \int_0^\pi (1 - \cos(2k_q + 1)x)(Q(x)\varphi_{j_q}, \varphi_{j_q}) \, dx. \]

From the condition (4) for \(Q(x) \) and since

\[M_k = \sqrt{2\pi^{-1}} \quad (k = 0, 1, 2, \cdots), \]

it follows that

\[D_{m1} = -\frac{1}{\pi} \sum_{q=1}^{n_m} \int_0^\pi \cos(2k_q + 1)x(Q(x)\varphi_{j_q}, \varphi_{j_q}) \, dx, \quad (2.12) \]

it can be proved that the series

\[\sum_{k=1}^{\infty} \sum_{j=1}^{\infty} \int_0^\pi (Q(x)\varphi_j, \varphi_j) \cos(2k + 1)x \, dx, \]

absolutely converges. It is known that

\[\lim_{m \to \infty} \sum_{q=1}^{n_m} \int_0^\pi \left(\cos(2k_q + 1)x(Q(x)\varphi_{j_q}, \varphi_{j_q}) \right) \, dx \]

\[= \sum_{k=1}^{\infty} \sum_{j=1}^{\infty} \int_0^\pi (Q(x)\varphi_j, \varphi_j) \cos(2k + 1)x \, dx. \]

By applying limit, as \(m \to \infty \), to the equation (2.12) and by considering the last relation above

\[\lim_{m \to \infty} D_{m1} = -\frac{1}{\pi} \sum_{k=1}^{\infty} \sum_{j=1}^{\infty} \int_0^\pi (Q(x)\varphi_j, \varphi_j) \cos(2k + 1)x \, dx \]

is found. By subtracting and adding the expression

\[(Q(x)\varphi_j, \varphi_j) \cos 2kx, \]

into the integral one obtains

\[\lim_{m \to \infty} D_{m1} = \]
\[-\frac{1}{\pi} \sum_{k=1}^{\infty} \sum_{j=1}^{\infty} \int_0^{\pi} [(Q(x)\varphi_j, \varphi_j)(\cos(2k+1)x + \cos 2kx) - (Q(x)\varphi_j, \varphi_j) \cos 2kx] \, dx.\]

It can be written the expression
\[-\frac{1}{\pi} \sum_{r=1}^{\infty} \sum_{j=1}^{\infty} \int_0^{\pi} (Q(x)\varphi_j, \varphi_j) \cos rx \, dx,
\]

instead of first term in the right side of this equality. Thus, we have
\[
\lim_{m \to \infty} D_{m1} = \left(-\frac{1}{\pi} \sum_{r=1}^{\infty} \sum_{j=1}^{\infty} \int_0^{\pi} (Q(x)\varphi_j, \varphi_j) \cos rx \, dx \right) + \frac{1}{\pi} \sum_{k=1}^{\infty} \sum_{j=1}^{\infty} \int_0^{\pi} (Q(x)\varphi_j, \varphi_j) \cos 2kx \, dx.
\]

We can write this equation in the form
\[
\lim_{m \to \infty} D_{m1} = \left(-\frac{1}{\pi} \sum_{r=1}^{\infty} \sum_{j=1}^{\infty} \int_0^{\pi} (Q(x)\varphi_j, \varphi_j) \cos rx \, dx \right) + \frac{1}{2\pi} \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} \left[\int_0^{\pi} (Q(x)\varphi_j, \varphi_j) \cos kx \, dx + (-1)^k \int_0^{\pi} (Q(x)\varphi_j, \varphi_j) \cos kx \, dx \right],
\]

and so we have
\[
\lim_{m \to \infty} D_{m1} = \left(-\frac{1}{2} \sum_{j=1}^{\infty} \left\{ \sum_{r=1}^{\infty} \left[\frac{2}{\pi} \int_0^{\pi} (Q(x)\varphi_j, \varphi_j) \cos rx \, dx \right] \cos k0 \right\} \right) + \frac{1}{4} \sum_{j=1}^{\infty} \left\{ \sum_{k=1}^{\infty} \left[\frac{2}{\pi} \int_0^{\pi} (Q(x)\varphi_j, \varphi_j) \cos kx \, dx \right] \cos k0 \right\} + \sum_{k=1}^{\infty} \left[\frac{2}{\pi} \int_0^{\pi} (Q(x)\varphi_j, \varphi_j) \cos kx \, dx \right] \cos k\pi.
\]

Since \(Q(x)\) satisfies the condition (4), the sum with respect to \(r\) in the first term on the right side of this expression is the value at 0 of Fourier series according to functions \(\{\cos rx\}_{r=0}^{\infty}\) in the interval \([0, \pi]\) of the function
\[(Q(x)\varphi_j, \varphi_j)_H\] having the derivative of second order. Similarly, the sums in the second term with respect to \(k\) are the values at the points 0 and \(\pi\) respectively of Fourier series with respect to the functions \(\{\cos mx\}_{m=0}^\infty\) in the same interval of that function.

For this reason we obtain that
\[
\lim_{m \to \infty} D_{m1} = -\frac{1}{2} \sum_{j=1}^{\infty} [(Q(0)\varphi_j, \varphi_j)] + \frac{1}{4} \sum_{j=1}^{\infty} [(Q(0)\varphi_j, \varphi_j) + (Q(\pi)\varphi_j, \varphi_j)]
\]
\[
= \frac{1}{4} [\text{tr} Q(\pi) - \text{tr} Q(0)].
\]

This proves the theorem.

\[\square\]

3. A Formula for the Regularized Trace of the Operator \(L\)

In this section, we obtain a formula for the limit \(\lim_{m \to \infty} \sum_{k=1}^{m} (\lambda_k - \mu_k)\) that we called the regularized trace of the operator \(L\) in the previous section.

Since \(\{\psi_q(x)\}_{q=1}^\infty\) is an orthonormal basis of the space \(H_1\), for every \(y \in H_1\) we have
\[
y = \sum_{k=1}^{\infty} (y, \psi_k) \psi_k \quad \text{and} \quad R^0_L y = \sum_{k=1}^{\infty} (y, \psi_k) R^0_L \psi_k.
\]

According to this, we obtain that
\[
QR^0_L \psi_{k1} = Q\psi_{k1} / (\mu_{k1} - \lambda),
\]
\[
(QR^0_L)^2 \psi_{k1} = QR^0_L \left(\frac{Q\psi_{k1}}{\mu_{k1} - \lambda} \right) = \frac{1}{\mu_{k1} - \lambda} (Q\psi_{k1})
\]
\[
= \frac{1}{\mu_{k1} - \lambda} \left[\sum_{k_2=1}^{\infty} (Q\psi_{k1}, \psi_{k2}) / (\mu_{k2} - \lambda) \psi_{k2} \right] = \frac{1}{\mu_{k1} - \lambda} \sum_{k_2=1}^{\infty} (Q\psi_{k1}, \psi_{k2}) / (\mu_{k2} - \lambda) Q\psi_{k2}.
\]

Similarly, it follows that
\[
(QR^0_L)^3 \psi_{k1} = \frac{1}{\mu_{k1} - \lambda} \sum_{k_2=1}^{\infty} \sum_{k_3=1}^{\infty} (Q\psi_{k1}, \psi_{k2}) / (\mu_{k2} - \lambda) (Q\psi_{k2}, \psi_{k3}) / (\mu_{k3} - \lambda) Q\psi_{k3},
\]

\[\ldots\]
\[(QR^0_\Lambda)^n \psi_k = \frac{1}{\mu_k - \lambda} \sum_{k_2=1}^{\infty} \sum_{k_3=1}^{\infty} \cdots \sum_{k_n=1}^{\infty} \left[\prod_{j=1}^{n-1} \frac{(Q\psi_{k_j}, \psi_{k_{j+1}})}{\mu_{k_{j+1}} - \lambda} \right] Q\psi_k. \quad (3.1)\]

This shows that

\[\text{tr} \ (QR^0_\Lambda)^n = \sum_{k_1=1}^{\infty} \left((QR^0_\Lambda)^n \psi_{k_1}, \psi_{k_1} \right)_1\]

\[= \sum_{k_1=1}^{\infty} \left(\frac{1}{\mu_{k_1} - \lambda} \sum_{k_2=1}^{\infty} \sum_{k_3=1}^{\infty} \cdots \sum_{k_n=1}^{\infty} \left[\prod_{j=1}^{n-1} \frac{(Q\psi_{k_j}, \psi_{k_{j+1}})}{\mu_{k_{j+1}} - \lambda} \right] Q\psi_{k_n}, \psi_{k_n} \right) = \sum_{k_2=1}^{\infty} \sum_{k_3=1}^{\infty} \cdots \sum_{k_n=1}^{\infty} \left[\prod_{j=1}^{n-1} \frac{(Q\psi_{k_j}, \psi_{k_{j+1}})}{\mu_{k_{j+1}} - \lambda} \right] \cdot (3.2)\]

where

\[\rho(j) = \begin{cases} j & \text{if } j < n, \\ 0 & \text{if } j = n. \end{cases}\]

By using this last equation (3.2), equation (2.9) comes to the form

\[D_{mj} = \frac{(-1)^j}{2\pi ij} \sum_{k_1=1}^{\infty} \sum_{k_2=1}^{\infty} \cdots \sum_{k_n=1}^{\infty} \left[\left(\int \left[\prod_{q=1}^{j} (\mu_{k_q} - \lambda)^{-1} d\lambda \right] \prod_{q=1}^{j} (Q\psi_{k_q}, \psi_{k_{\rho(q)+1}}) \right) \right], \quad (3.3)\]

or

\[D_{mj} = \frac{(-1)^j}{2\pi ij} \sum_{k_1=1}^{\infty} \sum_{k_2=1}^{\infty} \cdots \sum_{k_n=1}^{\infty} \left[\left(\int \left[\prod_{q=1}^{j} (\mu_{k_q} - \lambda)^{-1} d\lambda \right] \prod_{q=1}^{j} (Q\psi_{k_q}, \psi_{k_{\rho(q)+1}}) \right) \right], \quad (3.4)\]

where the symbol “*” denotes that these are numbers among \(\mu_{k_1}, \mu_{k_2}, \cdots, \mu_{k_j} \) less than or greater than \(b_{mj} \).

From equation (3.4) it can be seen that
\[D_{m2} = \frac{1}{4\pi i} \sum_{k_1=1}^{n_m} \sum_{k_2=n_m+1}^{\infty} \left[\int_{|\lambda|=b_m} \frac{d\lambda}{(\lambda - \mu_{k_1})(\lambda - \mu_{k_2})} \right] (Q\psi_{k_1}, \psi_{k_2})_1 (Q\psi_{k_2}, \psi_{k_1})_1 + \frac{1}{4\pi i} \sum_{k_1=n_m+1}^{\infty} \sum_{k_2=1}^{n_m} \left[\int_{|\lambda|=b_m} \frac{d\lambda}{(\lambda - \mu_{k_1})(\lambda - \mu_{k_2})} \right] (Q\psi_{k_1}, \psi_{k_2})_1 (Q\psi_{k_2}, \psi_{k_1})_1 \]

\[= \frac{1}{2\pi i} \sum_{k=1}^{n_m} \sum_{j=n_m+1}^{\infty} \left[\int_{|\lambda|=b_m} \frac{d\lambda}{(\lambda - \mu_k)(\lambda - \mu_j)} \right] (Q\psi_k, \psi_j)_1 (Q\psi_j, \psi_k)_1 + 1 \]

Since \(k \leq n_m \) and \(j \geq n_m + 1 \) we have

\[\frac{1}{2\pi i} \int_{|\lambda|=b_m} \frac{d\lambda}{(\lambda - \mu_k)(\lambda - \mu_j)} = \frac{1}{2\pi i} \int_{|\lambda|=b_m} \frac{1}{(\mu_k - \mu_j)} \left[\frac{1}{(\lambda - \mu_k)} - \frac{1}{(\lambda - \mu_j)} \right] d\lambda = \frac{1}{\mu_k - \mu_j} \left[\frac{1}{2\pi i} \int_{|\lambda|=b_m} \frac{d\lambda}{(\lambda - \mu_k)} - \frac{1}{2\pi i} \int_{|\lambda|=b_m} \frac{d\lambda}{(\lambda - \mu_j)} \right] = \frac{1}{\mu_k - \mu_j}. \]

This implies that

\[|D_{m2}| \leq \|Q\|_1^2 \Omega_m. \]

(3.6)
where
\[\Omega_m = \sum_{j=n_m+1}^{\infty} (\mu_j - \mu_{n_m})^{-1} \quad (m = 1, 2, \cdots). \]

In a similar form, by using (3.4) and considering the inequalities (2.2) and
\[x^{1+\delta} - (x-1)^{1+\delta} > x^\delta \quad (x > 1, \; \delta > 0), \]
it can be shown that
\[|D_{m3}| \leq \|Q\|^2 \Omega_m (\Omega_m + 4d_1^{-1}n_m^{-\delta}), \quad d_1 = \frac{d_0}{4}, \; \delta = \frac{\alpha - 2}{\alpha + 2}. \tag{3.7} \]

Moreover, if \(\gamma_j \sim a_j^\alpha \) as \(j \to \infty \) \((0 < a < \infty, 2 < \alpha < \infty)\) then it is satisfied that
\[\|R_\lambda\|_{\sigma_1(H_1)} < \text{const.} n_m^{-\delta} \quad (\delta = \frac{\alpha - 2}{\alpha + 2}), \tag{3.8} \]
on the circle \(|\lambda| = b_m\).

On the other hand, since \(Q(x) \) is a bounded self-adjoint operator from \(H_1 \) to \(H_1 \) and
\[\mu_n - \|Q\|_1 \leq \lambda_n \leq \mu_n + \|Q\|_1, \]
if \(\gamma_j \sim a_j^\alpha \) as \(j \to \infty \) \((a > 0, \; \alpha > 2)\) then for the large values of \(m \), the inequality
\[\|R_\lambda\|_1 < \frac{d_1}{4} n_m^\delta \quad (\delta = \frac{\alpha - 2}{\alpha + 2}), \tag{3.9} \]
is also satisfied on the circle \(|\lambda| = b_m\).

Now we are ready to prove the following theorem.

Theorem 3.1. Suppose that \(\gamma_j \sim a_j^\alpha \) as \(j \to \infty \) \((0 < a < \infty, 2 < \alpha < \infty)\). If the operator function \(Q(x) \) satisfies the conditions (2) and (3) then for \(j \geq 2 \)
\[\lim_{m \to \infty} D_{mj} = 0. \]

Proof. We can give a restriction to for the magnitude of the expression \(D_{m1} \): From (2.9) we have
\[
|D_{mj}| \leq \frac{1}{2\pi j} \int_{|\lambda| = b_m} |\text{tr} (QR^0_\lambda)^j||d\lambda| \leq \frac{1}{2\pi j} \int_{|\lambda| = b_m} \|QR^0_\lambda\|_{\sigma_1(H_1)}^j |d\lambda|
\]
\[
\leq \frac{1}{2\pi j} \int_{|\lambda| = b_m} \|QR^0_\lambda\|_{\sigma_1(H_1)} \|QR^0_\lambda\|_{\sigma_1(H_1)}^{j-1} |d\lambda|
\]
\[
\leq \frac{1}{2\pi j} \int_{|\lambda|= b_m} \|Q\|_1 \|R_0^\lambda\|_{\sigma_1(H_1)} \|QR_0^\lambda\|^{j-1}_{\sigma_1(H_1)} |d\lambda|
\]

\[
\leq \frac{1}{2\pi j} \int_{|\lambda|= b_m} \|Q\|^2_1 \|R_0^\lambda\|_{\sigma_1(H_1)} \|R_0^\lambda\|^{j-1}_{\sigma_1(H_1)} |d\lambda|. \quad (3.10)
\]

If we choose \(Q(x) \equiv 0\) identically then we have \(R_\lambda = R_0^\lambda\).

It means that
\[
\|R_\lambda\|_1 < \frac{d_1}{4} n_m^{-\delta} \quad (\delta = \frac{\alpha - 2}{\alpha + 2}). \quad (3.11)
\]

From (3.8), (3.10) and (3.11), it follows that
\[
|D_{mj}| \leq \text{const.} \int_{|\lambda|= b_m} n_m^{1-\delta} n_m^{-\delta(j-1)} |d\lambda| \leq \text{const.} \mu_{n_m} n_m^{1-\delta j}.
\]

Since \(\mu_{n_m} \leq \text{const.} n_m^{1+\delta}\) we have
\[
|D_{mj}| \leq \text{const.} n_m^{2-\delta(j-1)}.
\]

Clearly, if \(j > 1 + 2\delta^{-1}\) then
\[
\lim_{m \to \infty} D_{mj} = 0.
\]

For \(j = 2\) since \(\lim_{m \to \infty} \Omega_m = 0\), from (3.6) we obtain that
\[
\lim_{m \to \infty} D_{m2} = 0.
\]

Similarly, from (3.7) we see that
\[
\lim_{m \to \infty} D_{m3} = 0.
\]

It follows that for \(j = 2, 3, \ldots, |2\delta^{-1}| + 1\)
\[
\lim_{m \to \infty} D_{mj} = 0 \quad \square
\]

Our main result in this paper is given by the following theorem.
Theorem 3.2. Suppose that $\gamma_j \sim aj^\alpha$ as $j \to \infty (0 < a < \infty, 2 < \alpha < \infty)$. If the operator function $Q(x)$ satisfies the conditions (2), (3) and (4) then the formula
\[
\lim_{m \to \infty} \sum_{k=1}^{n_m} (\lambda_k - \mu_k) = \frac{1}{4} \left[\text{tr} Q(\pi) - \text{tr} Q(0) \right]
\]
is satisfied.

Proof. By using Theorem 2.1 and Theorem 3.1, from equation (2.6) we write that
\[
\lim_{m \to \infty} \sum_{k=1}^{n_m} (\lambda_k - \mu_k) = \frac{1}{4} \left[\text{tr} Q(\pi) - \text{tr} Q(0) \right] + \lim_{m \to \infty} D_m^{(p)}.
\] (3.12)

Here, by (2.8) we have
\[
D_m^{(p)} = \frac{(-1)^p}{2\pi i} \int_{|\lambda|=b_m} \lambda \text{tr} \left[R_\lambda (QR_\lambda^0)^{p+1} \right] d\lambda.
\]

We can give a restriction to the magnitude of this expression as in the following
\[
|D_m^{(p)}| \leq \frac{1}{2\pi i} \int_{|\lambda|=b_m} |\lambda| |\text{tr} \left[R_\lambda (QR_\lambda^0)^{p+1} \right]| d\lambda
\]
\[
\leq b_m \int_{|\lambda|=b_m} \| R_\lambda \|_1 \| (QR_\lambda^0)^{p+1} \|_{\sigma_1(H_1)} |d\lambda|
\]
\[
\leq b_m \int_{|\lambda|=b_m} \| R_\lambda \|_1 \| (QR_\lambda^0)^p \|_{\sigma_1(H_1)} \| (QR_\lambda^0)^{p+1} \|_{\sigma_1(H_1)} |d\lambda|
\]
\[
\leq b_m \int_{|\lambda|=b_m} \| R_\lambda \|_1 \| Q \|_p \| R_\lambda^0 \|_1 \| Q \|_p \| R_\lambda^0 \|_{\sigma_1(H_1)} |d\lambda|
\]
\[
\leq b_m \int_{|\lambda|=b_m} \| R_\lambda \|_1 \| Q \|_p \| R_\lambda^0 \|_1 \| Q \|_p \| R_\lambda^0 \|_{\sigma_1(H_1)} |d\lambda|.
\]

From (3.8) and (3.9) we obtain that
\[
|D_m^{(p)}| \leq \text{const.} b_m^2 n_m^{-(p+1)\delta} n_m^{1-\delta}.
\]
Since $b_m \leq \text{const.} \, n_m^{1+\delta}$ then we have

$$|D_m^{(p)}| \leq \text{const.} \, n_m^{-(p+2)\delta+1} n_m^{2(1+\delta)} = \text{const.} \, n_m^{3-p\delta}.$$

It follows that for $p > 3\delta^{-1}$

$$\lim_{m \to \infty} D_m^{(p)} = 0.$$

If we substitute this result in equation (3.12) we obtain the regularized trace formula of operator L as

$$\lim_{m \to \infty} \sum_{k=1}^{n_m} (\lambda_k - \mu_k) = \frac{1}{4} [\text{tr} Q(\pi) - \text{tr} Q(0)].$$

The proof is done.

Acknowledgments

We offer our deepest gratitude to Professor Dr. Ehliman Adigüzelov for his sincerity and the thoughtfulness he showed to us during the exploration of this work.

References

