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1. Introduction

We study a class of empirical measures on C[0,∞) associated with Sn(g) =
∑n−1

k=0 g(Xk), where (Xk) is a Markov chain with an invariant measure m and
g ∈ L2(m), via an invariance principle corresponding to interpolation of Sn.

Section two introduces the necessary background and provides auxiliary
results for subsequent analysis. In section three we provide criteria which allow
us to establish a martingale decomposition representation for Sn(g), the key
element in the proof of the large deviation result presented in the last section
of the paper.
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2. Auxiliary Results

2.1. Functional Almost Everywhere Central Limit Theorems for

Additive Functionals

Let X1,X2, ... be a sequence of i.i.d. random variables on (Ω,F , IP) such that
IE(Xi) = 0 , IE(X2

i ) = 1 and Sn =
∑n

i=1Xi. Define the interpolation processes,
with ψn

(

k
n

)

= Sk for 1 ≤ k ≤ n,

ψn(t) :=
1√
n

(

S[nt] + (nt− [nt])(S[nt]+1 − S[nt])
)

, 0 ≤ t ≤ 1 (2.1)

and empirical processes Wn : C[0, 1] → M1(C[0, 1]),

Wn(·) :=
1

L(n)

n
∑

k=1

1

k
δ{ψk∈·} (2.2)

with L(n) =
∑n

k=1
1
k . The following functional almost everywhere central limit

theorem is due to Brosamler [1].

Theorem 2.1. The random process Wn converges weakly to the Wiener
measure W on C[0, 1], IP-a.e.

Let (Xn) be an ergodic Markov chain with stationary measure m, Sn(g) =
∑n−1

k=0 g(Xk) be such that IEm(S2
1) = σ2 ∈ (0,∞) and for any initial distribution

µ and any k ∈ IN, IEµ(S
2
k) <∞. Define the interpolation processes

Ψn(t) :=
1

σ
√
n

(

S[nt] + (nt− [nt])(S[nt]+1 − S[nt])
)

, 0 ≤ t <∞ (2.3)

and the empirical processes

Wn(·) :=
1

L(n)

n
∑

k=1

1

k
δ{Ψk∈·} . (2.4)

Theorem 2.2. Wn converges weakly to the Wiener measureW on C[0,∞),
IPµ-a.e.

Proof. By using our martingale decomposition (see Section 3, Theorem 3.1)
we can write Sn = Mn +Rn, where (Mn) is a mean zero martingale for which

sup1≤k≤n
|Rk|
σ
√
n

converges in probability to 0. Define the empirical measures

WM
n (·) =

1

L(n)

n
∑

k=1

1

k
δ{ΨM

k ∈·} , (2.5)
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where ΨM
n is the interpolation process

ΨM
n (t) =

1

σ
√
n
{M[nt] + (nt− [nt])(M[nt]+1 −M[nt]) (2.6)

corresponding to the martingale M = (Mn). By [8], WM
n converges weakly

to the Wiener measure W on C[0, 1], i.e., for any bounded continuous function
f : C[0, 1] → IR , W - a.e.,

lim
n→∞

1

L(n)

n
∑

k=1

1

k
δf◦ΨM

k
= φ(W ) .

To show that Wn converges weakly to the Wiener measure W on C[0, 1], we
check that

lim
n→∞

1

L(n)

n
∑

k=1

1

k
δf◦Ψk

= lim
n→∞

1

L(n)

n
∑

k=1

1

k
δf◦ΨM

k

for which it is sufficient to have limn→∞ ||Ψn − ΨM
n ||C[0,1] = 0. Indeed,

||Ψn − ΨM
n ||C[0,1] = sup

t∈[0,1]
|Ψn(t) − ΨM

n (t)|

= sup
t∈[0,1]

∣

∣

∣

∣

1

σ
√
n
{R[nt] + (nt− [nt])(R[nt]+1 −R[nt])}

∣

∣

∣

∣

≤ sup
1≤k≤n

sup
t∈[k−1

n
, k
n ]

1

σ
√
n
|R[nt] + (nt− [nt])(R[nt]+1 −R[nt])| ≤ sup

1≤k≤n

1

σ
√
n
|Rk|

which by (3.2) converges to 0 in probability.

By replacing 1 with N in the above proof the result holds for C[0, N ], for
every N > 0. The extension to C[0,∞) is standard: νn converges weakly to ν
on C[0,∞) if for every N > 0, πNνn converges weakly to πNν on C[0, N ], where
πN of a measure on C[0,∞) denotes the measure it induces on C[0, N ].

In our case this means that Wn converges weakly to the Wiener measure
W on C[0,∞).

2.2. Large Deviation Principle for Ornstein-Uhlenbeck Processes

Define the canonical shifts σt : C(IR) → C(IR) by

σtω(s) := ω(t+ s)

and empirical processes RT : C(IR) → M1(C(IR)) for any T > 0 by

RT :=
1

2T

∫ T

−T
δσtωdt.
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Assume that σ is an ergodic transformation, and let IP be a σ-invariant measure
i.e. IP is the probability measure on the space of trajectories corresponding to
the Ornstein-Uhlenbeck processes starting with stationary distribution at time
t = 0.

Let Ω = C(IR), then for any bounded continuous function we have:
∫

Ω
f(ω)dRT (ω) =

1

2T

∫ T

−T

(∫

Ω
f(ω)dδσtω

)

dt =
1

2T

∫ T

−T
f(σtω)dt

→
∫

Ω
f(ω)dIP

a.s. as T → ∞ by ergodic theorem. This implies the weak convergence RT ⇒ IP
as T → ∞. The exponential decay for the deviations of RT from IP was given by
Donsker and Varadhan in [2] through the rate function H(Q), Q ∈ M1(C(IR))
defined as

H(Q) :=

{

limT→∞
1
T h(ℑ|[−T,T ](Q)/ℑ|[−T,T ](IP)) if Q is σ invariant ,

∞ otherwise ,

where ℑ|I(µ) denote the image of a measure µ under the restriction map on I
and h(µ/ν) is the relative entropy of µ with respect to ν,

h(µ/ν) :=

{ ∫

log(dµdν ) if µ≪ ν ,
∞ otherwise .

(2.7)

Theorem 2.3. For every bounded interval I ⊂ IR,

HI(·) := inf
Q∈ℑ|−1

I (·)
H(Q)

is a rate function on M1(C(I)) and for any Borel set A ⊆ M1(C(I)),

− inf
A◦
HI ≤ lim inf

T→∞
1

T
log IP{ℑ|I(RT ) ∈ A}

≤ lim sup
T→∞

1

T
log IP{ℑ|I(RT ) ∈ A} ≤ − inf

Ā
HI .

An extension to paths on [0,∞) by using a finer topology than the topology
of uniform convergence on compact sets was obtained by Heck in [4].

Theorem 2.4. Let Φ : IR → [0,∞) be a continuous function satisfying

lim
t→∞

Φ(t)√
t

= lim
t→−∞

Φ(t)
√

|t|
= ∞ (2.8)

and CΦ := {ω ∈ C(IR) : supt∈IR
|ω(t)|
Φ(t) < ∞}, M1(CΦ) = {Q ∈ M1(C(IR)) :

Q(CΦ) = 1}. Then H|M1(CΦ) is a rate function on M1(CΦ), and for every Borel
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set A ⊆ M1(CΦ),

− inf
A◦
H ≤ lim inf

T→∞
1

T
log IP{RT ∈ A} ≤ lim sup

T→∞

1

T
log IP{RT ∈ A} ≤ − inf

Ā
H .

Remark 2.5. Under condition (2.8), IP ∈ M1(CΦ) and IP-a.e. RT ∈
M1(CΦ).

2.3. Large Deviation Principle for Brownian Motion

Let φ : IR+ → IR+ be a continuous function such that

lim
t→0

φ(t)
√

t| log t|
= lim

t→∞
φ(t)

√

t| log t|
= ∞, (2.9)

and the set Cφ defined as

Cφ := {ω ∈ C[0,∞) : sup
t∈IR+

|ω(t)|
φ(t)

<∞} .

Consider the isomorphism F : C(IR) → C[0,∞), F (ω)(t) :=
√
t ω(log t).

Then F |CΦ
: CΦ → Cφ is a bijective isometry with respect to | · |Φ and | · |φ

if Φ(·) = φ(exp(·))√
exp(·)

. Let us denote W := ℑF (IP), so W is Wiener measure on

C[0,∞). Theorem 2.4 can be written in terms of Brownian motion as follows:

For any t ∈ IR define θt : C[0,∞) → C[0,∞) by θtω(s) := e−t/2ω(ets) and
for any T > 0 empirical processes ST : C[0,∞) → M1(C[0,∞)) by

ST (ω) :=
1

2T

∫ T

−T
δθtωdt .

Theorem 2.6. Define for any Q in M1(C[0,∞)) the function

I(Q) :=

{

limT→∞
1
T h(ℑ|[e−T ,eT ](Q)/ℑ|[e−T ,eT ](W )) if Q is θ-invariant ,

∞ otherwise .
(2.10)

Then I|M1(Cφ) is a rate function and for any Borel set A ⊆ M1(Cφ),

− inf
A◦
I ≤ lim inf

T→∞
1

T
logW{ST ∈ A} ≤ lim sup

T→∞

1

T
logW{ST ∈ A} ≤ − inf

Ā
I ,

where M1(Cφ) := {Q ∈ M1(C[0,∞)) : Q(Cφ) = 1}.

Let us define for any a > 0, θa : C[0,∞) → C[0,∞) by

θaω(t) =
1√
a
ω(at)
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and empirical processes RT : C[0,∞) → M1(C[0,∞)),

RT :=
1

log T

∫

√
T

1√
T

δθtω
dt

t
.

Then (Rn) satisfies LDP with constants (log n) and rate function I, where

I(Q) :=







lima→∞
1

2 log ah

(

Q ◦ |−1
[ 1
a
,a]
/W ◦ |−1

[ 1
a
,a]

)

if Q is θ-invariant ,

∞ otherwise ,
(2.11)

which means

− inf
A◦
I ≤ lim inf

n→∞
1

log n
logW{Rn ∈ A} ≤ lim sup

n→∞

1

log n
logW{Rn ∈ A} ≤ − inf

Ā
I .

Since 1
logn

∫ n
1 δθt

dt
t has under W the same distribution as 1

logn

∫

√
n

1√
n

δθt
dt
t we

have the following corollary:

Corollary 2.7. Let
∼
Rn = 1

logn

∫ n
1 δθt

dt
t . Then (

∼
Rn) satisfies LDP with

constants (log n) and rate function I defined in (2.11).

2.4. Large Deviation Principle for Sequence of i.i.d. Random

Variables

Let us considerX1,X2, ... i.i.d. random variables on (Ω,F , IP) such that IE(Xi) =
0 , IE(X2

i ) = 1 and Sn =
∑n

i=1Xi.

We want to prove the LDP for the functional almost everywhere central
limit theorem given in Theorem 2.1.

Lemma 2.8. Let Yn and Zn be random variables with values in a metric
space (E, d) such that for all ǫ > 0,

lim
n→∞

1

log n
log IP{d(Yn, Zn) > ǫ} = −∞ . (2.12)

Then Yn and Zn are equivalent with respect to LDP (or exponentially equiv-
alent), which means that if (Yn) satisfies LDP with constants (log n) and rate
function I, then (Zn) also satisfies LDP with the same constants and rate func-
tion.

To use this lemma for sequences of random variables in M1(Cφ) it is neces-
sary to define a metric, as done in [4].

Let (Cφ, | · |φ) be a metric space, with |ω|φ = supt∈IR+

|ω(t)|
φ(t) . On M1(Cφ)
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define

dφ(µ, ν) := sup

{∣

∣

∣

∣

∫

f dµ−
∫

f dν

∣

∣

∣

∣

, f ∈ C(Cψ, IR), ‖f‖L ≤ 1

2

}

, (2.13)

where ‖f‖L := supω∈Cφ
|f(ω)|+ supω,ω′∈Cφ,ω 6=ω′

|f(ω)−f(ω′)|
|ω−ω′|φ . Then (M1(Cφ), dφ)

becomes a metric space and the following properties hold:

(a) dφ ≤ 1.

(b) dφ(αµ + (1 − α)ν, α
∼
µ + (1 − α)

∼
ν) ≤ αdφ(µ,

∼
µ) + (1 − α)dφ(ν,

∼
ν), for

α ∈ [0, 1] and µ,
∼
µ, ν,

∼
ν ∈ M1(Cφ).

(c) dφ(δω, δω′) ≤ |ω − ω′|ψ for ω, ω′ ∈ Cφ.
Then, as shown in [3], we have

Lemma 2.9. Let Yt,Zt, t ∈ [1,∞) be random variables with values in the
separable metric space (Cφ, | · |φ) such that t→ Yt, t→ Zt are continuous from
the right or left and for all ε > 0,

lim
l→∞

1

log l
log IP

{

sup
s∈[l,l+1)

|Ys − Zs|φ > ε

}

= −∞ . (2.14)

Then
(

1
logn

∫ n
1 δYs

ds
s

)

and
(

1
logn

∫ n
1 δZs

ds
s

)

are equivalent with respect to LDP.

Let Wn = 1
L(n)

∑n
k=1

1
k δψk

be as defined in (2.2) and φ above satisfies in

addition φ(t) > t
1+ε
2 , for t ∈ [0, 1].

Theorem 2.10. (Wn) satisfies LDP with constants (log n) and rate func-
tion I defined by (2.11).

Proof. Let
∼
W n := 1

logn

∫ n
1 δψ[s]

ds
s . First we show that

∼
W n and Wn are

exponentially equivalent. By Lemma 2.8 it suffices to verify

lim
n→∞

1

log n
log IP{dφ(Wn,

∼
W n) > ε} = −∞ .

Given f ∈ C(Cφ, IR), ‖f‖L ≤ 1
2 we have

|
∫

f dWn −
∫

f d
∼
W n| =

∣

∣

∣

∣

∣

1

log n

∫ n

1
f(ψ[t])

dt

t
− 1

L(n)

n
∑

k=1

1

k
f(ψk)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1

log n

n−1
∑

k=1

log(1 +
1

k
)δψk

− 1

L(n)

n
∑

k=1

1

k
f(ψk)

∣

∣

∣

∣

∣
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≤
∣

∣

∣

∣

1

L(n)
log(1 +

1

n
f(ψn)

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

1

L(n)

n−1
∑

k=1

(

log(1 +
1

k
) − 1

k

)

f(ψk)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

1

L(n)
− 1

log n

∣

∣

∣

∣

∣

∣

∣

∣

∣

n−1
∑

k=1

log(1 +
1

k
f(ψk)

∣

∣

∣

∣

∣

≤ 1

2

(

1

nL(n)
+

C

L(n)

n−1
∑

k=1

1

k2
+

∣

∣

∣

∣

1 − log n

L(n)

∣

∣

∣

∣

)

,

which converges to 0 uniformly as n→ ∞.

Let X1,X2, .... be i.i.d. random variables such that IE(Xi) = 0, IE(X2
i ) = 1

and the partial sum Sn =
∑n

i=1Xi. If one shows that (
∼
W n) satisfies the LDP

with constants (log n) and rate function I in the case in which Xi are i.i.d.
N(0, 1)-distributed, then the general case follows, see [3], i.e., by Skorokhod’s
Representation Theorem there exists a probability space (Ω,F , IP) with random
variables (Yn) and (Zn) such that Yn, n ∈ IN are i.i.d. with the same distribution

as Xn, Zn are i.i.d N(0, 1)-distributed and (
∼
Wn) corresponding to (Yn) and

respectively (Zn) are shown to be equivalent with respect to LDP. Therefore,
it remains to consider the case for Xi which are i.i.d. N(0, 1)-distributed.

Let (Ω = C0[0,∞),F , IP = W ) with coordinate mapXt(ω) = ω(t) andXi(ω)

:= ω(i)−ω(i−1) ∼ i.i.d. N(0, 1)-distributed. We will show that (
∼
W n) satisfies

the LDP by checking that
∼
Wn and

∼
Rn are equivalent with respect to LDP.

By Lemma 2.9, this reduces to checking that for any ǫ > 0

lim
n→∞

1

log n
logW

{

sup
s∈[n,n+1)

|θs − ψn|φ > ε

}

= −∞ . (2.15)

The probability W{sups∈[n,n+1) |θs − ψn|φ > ε} is dominated by the sum of
three probabilities,

W{ sup
s∈[n,n+1)

|θn − ψn|φ >
ε

2
},

W{ sup
s∈[n,n+1)

sup
t∈IR+

1√
s

|ω(st) − ω(nt)|
φ(t)

>
ε

4
},

W{ sup
s∈[n,n+1)

sup
t∈IR+

| 1√
s
− 1√

n
| |ω(nt)|
φ(t)

>
ǫ

4
}.

Given ε > 0, based on arguments of Lemma 4 in [4], the estimates below hold
for large n and utilize the properties of function φ given in Theorem 2.6 along
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with the properties of Brownian motion,

W

{

ω ∈ C0[0,∞) : sup
t∈[a,b]

|ω(t) − ω(a)| ≥ c

}

≤ 2 exp

(

− c2

2(b− a)

)

for all 0 ≤ a < b and c > 0, and the inequalities:

Log(e|k|) ≥ |k| + 1

2
, sup

s∈[n,n+1)
(

1√
n
− 1√

u
) ≤ 1

2
n−3/2.

In what follows the positive constant cij represent the j-th constant in the i-th
estimate.

Regarding the first estimate we have

W

{

sup
s∈[n,n+1)

sup
t∈IR+

|θs − ψn|φ >
ε

2

}

≤W







sup
k≥1

sup
t∈[ k

n
, k+1

n )

|θn(t) − ψn(t)|
φ(t)

>
ε

2

√
n







≤W

{

sup
k≥1

sup
t∈[k,k+1)

|ω(t) − ω(k)| > ε

2

√
nφ

(

k

n

)

}

.

Then for sufficiently large n

W

{

sup
1≤k≤n

sup
t∈[k,k+1)

|ω(t) − ω(k)| > ε

2

√
nφ

(

k

n

)

}

≤
n
∑

k=1

W

{

sup
t∈[k,k+1)

|ω(t) − ω(k)| > ε

2

√
n

√

k

n

(

k

n

)ε
}

≤
n
∑

k=1

W

{

sup
t∈[k,k+1)

|ω(t) − ω(k)| > ε

2

k
1
2
+ε

nε

}

≤
n
∑

k=1

2 exp

(

−1

2

ε2

4

k1+2ε

n2ε

)

≤ 2n exp

(

−ε
2

8
n

)

and

W

{

sup
k≥n+1

sup
t∈[k,k+1)

|ω(t) − ω(k)| > ε

2

√
n

√

k

n
Log

(

k

n

)

}

≤
∞
∑

k=n+1

W

{

sup
t∈[k,k+1)

|ω(t) − ω(k)| > ε

2

√
3k

}
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≤
∞
∑

k=n+1

2 exp

(

−1

2

ε2

4
9k

)

≤ c11e
−c12n.

Therefore

W{ sup
s∈[n,n+1)

|θs − ψn|φ > ε} ≤ 2n exp

(

−ε
2

8
n

)

+ c11e
−c12n.

For the second estimate one obtains

W

{

sup
s∈[n,n+1)

sup
t∈IR+

|ω(st) − ω(nt)|√
sφ(t)

>
ε

4

}

≤
∑

l∈ZZ

W

{

sup
s∈[n,n+1)

sup
t∈[el,el+1)

|ω(st) − ω(nt)|
φ(t)

>
ε

4

√
n

}

≤
∑

l∈ZZ

W

{

sup
s∈[0,1)

sup
t∈[el,el+1)

|ω((s + n)t) − ω(nt)|
φ(t)

>
ε

4

√
n

}

≤
∑

l∈ZZ

W

{

sup
s∈[0,1)

sup
t∈[1,e)

|ω((s + n)t) − ω(nt)| > ε

4

√
n
φ(el)√
el

}

≤
∑

l∈ZZ

W

{

sup
s∈[0,1)

sup
t∈[1,e)

|ω((s+ n)t) − ω(nt)| > ε
√

nLog(e|l|)ζ(e|l|)
4

}

≤
∑

l∈ZZ

c21n exp(−c22ε2n(|l| + 1)) ≤ c23n exp(−c24ε2n),

where ζ : [1,∞) → [1,∞), ζ(t) := infs∈IR+\( 1
t
,t)

φ(s)2

sLog(s) , limt→∞ ζ(t) = ∞.

Finally

W

{

sup
s∈[n,n+1)

sup
t∈IR+

∣

∣

∣

∣

1√
s
− 1√

n

∣

∣

∣

∣

|ω(nt)|
φ(t)

>
ε

4

}

≤W

{

sup
t∈IR+

|ω(nt)|
n
√
nφ(t)

>
ε

4

}

≤
∑

l∈ZZ

W

{

sup
t∈[el,el+1)

|ω(t)|
φ(t)

>
εn

4

}

≤
∑

l∈ZZ

W

{

sup
t∈[1,e)

|w(t)| > ε
n

4

√

Log(e|l|)ζ(e|l|)

}

≤
∑

l∈ZZ

c31 exp(−ε2n2c32(|l| + 1)) ≤ c32 exp(−c34ε2n2).

which establishes (2.15) and concludes the proof.
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3. Martingale Decomposition of Markov Functionals

In this section we show that certain functionals of Markov chains can be written
as martingales perturbed by random variables whose maxima (scaled by factor
1√
n
) converge in probability to zero at a prescribed rate. The main interest in

such representation stems from the fact that when proving central limit theorem
or large deviation principle, the methods in Markovian versus martingale case
are essentially different (except when the two cases overlap and either method
can be employed), while martingale approach is often preferable. For instance,
martingale maximal inequalities offer a useful tool in handling the tail estimates
which in turn could be applied to Markovian cases whenever possible.

In what follows we provide criteria for a martingale decomposition and
describe the classes of Markov chain functionals that allow such representation.

Let (Ω,F , IP) be a probability space, (E,BE) a complete separable metric
space, and letXn, n ≥ 0 be a Markov chain defined on Ω with values in E. Given
a probability measure µ on (E,BE), one defines the probability measures IPµ
by

IPµ(B) = µIP(B) =

∫

E
µ(dx)p(x,B), x ∈ E,B ∈ F ,

where p(x,B), x ∈ E, B ∈ BE is the Markov transition function of Xn, n ≥ 0.
We denote by IEµ and IEx the expectations corresponding to IPµ and IPx respec-
tively. Inductively one defines the n-step transition probability by pn(x,B) =
IP(Xn ∈ B|X0 = x) = IP(Xn+m ∈ B|Xm = x).

Let P be the transition probability operator defined as

Pϕ(x) := IE[ϕ(xn+1)|xn = x] =

∫

E
p(x, dy)ϕ(y)

and denote by Pn the n-step transition operator corresponding to the n-step
transition probability pn(x,B).

Theorem 3.1. Let Xn, n ≥ 0 be an ergodic E-valued Markov chain with
initial distribution µ and unique invariant probability measure m.

If g ∈ L2(m) := {g : E → IR :
∫

E g
2 dm <∞} satisfies the properties:

(i)
∫

E g dm = 0.

(ii) ‖P kg‖L2(m) ≤ ρk‖g‖L2(m) for some 0 < ρ < 1, k ∈ IN.

(iii) dµP k

dm ≤ D < ∞, k ∈ IN and
∫

{x: g2(x)>n} g
2(x)m(dx) ≤ exp(−ϕ(n)) for

n large, with ϕ : IR+ → IR+ such that limx→∞
ϕ(x)
log(x) → ∞.
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(iv) |P kg(x)| ≤ Cn, whenever |g(x)| ≤ n, for some 1 < C < ∞, x ∈ E,
k ∈ IN, and large n.

Then

Sn(g) :=

n−1
∑

k=0

g(Xk) = Mn +Rn , (3.1)

where Mn is a mean zero martingale relative to (Ω,Fn, IP), with the natural
filtration Fn = σ(X0, ...,Xn) and

lim
n→∞

1

log n
log IP

{

sup1≤k≤nR
2
k

n
> ε

}

= −∞. (3.2)

Proof. We show that under our hypothesis the Poisson equation (I−P )u =
g has a unique solution. Notice that I − P is not invertible, while ((1 + ε)I −
P )uε = g, ε > 0 has unique solution

uε = ((1 + ε)I − P )−1g =
1

1 + ε

∞
∑

k=1

P k−1g

(1 + ε)k−1
(3.3)

thanks to 1 + ε being in the resolvent of L2(m)-contractive P , whose spectral
radius is 1. Condition (ii) implies that the series in (3.3) converges in L2(m)
and we have

u(x) := lim
ε→0

uε(x) =

∞
∑

i=0

P kg. (3.4)

Therefore, Sn(g) =
∑n−1

k=0 g(Xk) =
∑n

k=1(u(Xk)−Pu(Xk−1)) + u(X0)− u(Xn)
and by Markov property

Mn :=
n
∑

k=1

(u(Xk) − Pu(Xk−1))

is a mean zero martingale in L2(m) with respect to the natural filtration Fn =
σ(X0, ...,Xn). Setting

Rn := u(X0) − u(Xn) (3.5)

establishes the martingale decomposition (3.1).

To simplify notation, summation index below and whenever else integer is
needed, is understood as the integer part of the number. For each k ∈ IN we
have

IP(u2(Xk) > Cn) ≤ IP





∣

∣

∣

∣

∣

∣

4
√
n

∑

i=0

P ig(Xk)

∣

∣

∣

∣

∣

∣

>

√
Cn

2




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+ IP





∣

∣

∣

∣

∣

∣

∞
∑

i= 4
√
n+1

P ig(Xk)

∣

∣

∣

∣

∣

∣

>

√
Cn

2



 .

The second term with n ≥ 4 satisfies

IP





∣

∣

∣

∣

∣

∣

∞
∑

i= 4
√
n+1

P ig(Xk)

∣

∣

∣

∣

∣

∣

>

√
Cn

2



 ≤ IE

∣

∣

∣

∣

∣

∣

∞
∑

i= 4
√
n+1

P ig(Xk)

∣

∣

∣

∣

∣

∣

=

∥

∥

∥

∥

∥

∥

∞
∑

i= 4
√
n+1

P ig(Xk)

∥

∥

∥

∥

∥

∥

L1(Ω)

≤

∥

∥

∥

∥

∥

∥

∞
∑

i= 4
√
n+1

P ig(Xk)

∥

∥

∥

∥

∥

∥

L2(Ω)

≤
∞
∑

i= 4
√
n+1

‖P ig(Xk)‖L2(Ω) .

Using conditions (iii) and (ii) we get

‖P ig(Xk)‖2
L2(Ω) = IE(P ig(Xk))

2 = IE

(∫

g(y)pi(Xk, dy)

)2

=

∫ (∫

g(y)pi(x, dy)

)2

µP k(dx)≤ D‖P ig(x)‖2
L2(m)≤ Dρ2i‖g(x)‖2

L2(m) .

Consequently, for n sufficiently large,

IP





∣

∣

∣

∣

∣

∣

∞
∑

i= 4
√
n+1

P ig(Xk)

∣

∣

∣

∣

∣

∣

>

√
Cn

2



≤
√
D
ρ

4
√
n+1

1 − ρ
‖g‖L2(m)≤A exp(−B 4

√
n)

for some positive constants A and B. Turning to the first term, we have

IP





∣

∣

∣

∣

∣

∣

4
√
n

∑

i=0

P ig(Xk)

∣

∣

∣

∣

∣

∣

>

√
Cn

2



 ≤
4
√
n

∑

i=0

IP

(

|P ig(Xk)|2 >
Cn

4

)

,

and for Ω = {g2(Xk) >
n
4 } ∪ {g2(Xk) ≤ n

4 } gives

IP

(

|P ig(Xk)|2 >
Cn

4

)

≤ IP(g2(Xk) >
n

4
)

+ IP

(

{g2(Xk) ≤
n

4
} ∩ {|P ig(Xk)|2 >

Cn

4
}
)

and (iv) makes the second term disappear while the first term, thanks to (ii),
satisfies

IP

(

g2(Xk) >
Cn

4

)

= µIPk
(

g2 >
Cn

4

)

≤ exp
(

−ϕ
(n

4

))

.
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Combining the above yields

IP( max
1≤k≤n

|Rk| >
√
εCn) ≤ nIP(|Rk| >

√
εCn) ≤ 2nIP(|u(Xk)| >

√
εCn

2
)

≤ 2n
[

A exp
(

−B 4
√
n) + 4

√
n exp(−ϕ

(n

4

))]

and (3.2) follows.

Theorem 3.2. The following classes of processes satisfy the conclusions
(3.1) and (3.2) of Theorem 3.1:

(a) finite state irreducible, aperiodic Markov chains.

(b) uniformly ergodic Markov chains with bounded functions g.

(c) Markov chains obtained by quantization Pn of continuous time Markov
processes P t, that are symmetric on L2(m) (i.e. for which m is a reversible
measure).

Proof. (a) Since there is a unique invariant measure m = (m1, ..., mN ), the
assumption (i) for g = (g1, ..., gN ) can be written as

∑N
i=1 gimi = 0. Then by

the Fredholm Alternative, there is a solution of the Poisson equation (I−P )u ≡
Au = g if and only if g is orthogonal to w where A∗w ≡ ATw = 0. The later is
true because mA = 0 or ATmT = 0. We do not need to verify (ii) since that
was only used to prove the existence of solution to the Poisson equation. Also,
since g on {1, ..., N} is bounded, (iii) and(iv) clearly hold.

(b) If the Markov chain is uniformly ergodic then the operator Q := I − P
is normally solvable and condition (i) enables the uniqueness of the solution
of the Poisson equation. That is u = R0g where R0 is the potential operator
defined by R0 :=

∑∞
n=0[P

n−Π] and the projection operator in B(E) is defined
by Πg(x) :=

∫

Em(dx)g(y)1I(x). Since R0 is a bounded operator conclusions
(3.1) and (3.2) follows directly. Moreover, the conditions (iii) and (iv) holds
because g is bounded.

(c) For the sake of the discussion, we consider a class of continuous time
Markov processes in (IRd, | · |) such that P tg = etAg for smooth functions g,
where the infinitesimal generator A has a discrete spectrum {−λn, n ∈ IN}
with λ0 = 0 < λ1 < λ2 · · · and its corresponding orthonormal in L2(m) set
of eigenfunctions {en, n ∈ IN} with e0 = 1. Then for any g in the orthogo-
nal complement 1⊥, the condition (i) is satisfied and P ken = e−λnken, n ≥ 1.
Consequently, for g ∈ 1⊥, g =

∑∞
n=1 αnen, P

kg(x) =
∑∞

n=1 αne
−λnken, whence

‖P kg(x)‖L2(m) ≤ ρk‖g‖L2(m) with 0 < ρ = e−λ1 < 1 and this gives (ii). Fur-
thermore, the invariant measure m often has a density with respect to Lebesque

measure and condition dµP k

dm ≤ D < ∞ is satisfied. Finally, given m, the tail
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condition
∫

{g2>n} g
2 dm ≤ exp(−ϕ(n)) is readily verifiable for a large class of

g ∈ 1⊥ in addition to which g is chosen to satisfy (iv). We remark that for
any finite linear combination of eigenfunctions from 1⊥, the condition (iv) is
redundant and the tail condition reduces to

∫

{e2i>a}
e2i dm ≤ e−ϕ(a) for large a.

Namely, given g =
∑N

i=1 αiei,

|P ig(x)|2 ≤ ‖g‖2
L2(m)(e

2
1(x) + · · · + e2N (x))

and therefore

IP(|P ig(Xk)|2 > n) ≤ IP

(

N
∑

i=1

e2i (Xk) > n

)

≤
N
∑

i=1

IP
(

e2i (Xk) >
n

N

)

≤ ND max
1≤i≤N

∫

{e2i>n/N}
e2i dm

as claimed.

Hypercontractivity Example. Consider a 1-dimensional Ornstein-Uh-
lenbeck process Xt satisfying the equation dXt = −1

2Xtdt + dBt, X0 = x,
where Bt is the standard Brownian motion, with infinitesimal generator A =
1
2
d2

dx2 − 1
2x

d
dx and the invariant measure dm = 1√

2π
e−

x2

2 dx. Then P tg(x) :=
∫

g(y)pt(x, y)dy, where

pt(x, y) =
1

√

2π(1 − e−t)
e
− (xe

− t
2 −y)2

2(1−e−t) ,

is a m-symmetric hypercontractive Hermite semigroup with other examples,
including Laguerre semigroup, studied in [7] and [6].

Here, for Hermite polynomials Hn = (−1)ne
x2

2
dn

dxn e
−x2

n , we have H0 =

1,H1 = x,H2 = x2 − 1,H3 = x3 − 3x, ..., en = Hn√
n!

form an orthonormal basis

for L2(m) and AHn = −n
2Hn gives the corresponding eigenvalues λn = −n

2 ,
n ∈ IN. Letting t = 0, 1, 2, ... we obtain the embedded Markov chain Xn. Since

dµP k =
1

√

2π(1 − e−k)
e
− (xe

− k
2 −y)2

2(1−e−k) dy ,

then, for example, taking µ = δx = δ0 we have

dµP k

dm
=

1√
1 − e−k

e
− y2

2

“

e−k

1−e−k

”

≤
√

e

e− 1
≡ D .

It is easy to see that for polynomial domination, |g(x)| ≤ B|x|l, l ∈ IN, and for
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large n
∫

{g2>n}
g2 dm ≤ Cn2l−1e−

n2

2 ≤ e−
n2

4

whence one may choose ϕ(x) = x2

4 to satisfy the tail estimate.

For example, taking g(x) = x one gets

|P ig(x)|2 =

(∫

|g(y)pi(x, y) dy|
)2

≤ D‖g‖L2(m) = D2(1 − e−i + x2)

≤ 4Dmax(1, x2)

and condition (iv) holds true with C = 2D.

For general g, even growing exponentially fast to infinity, it requires some
work through estimates and usually g determines ϕ.

4. Large Deviation Principle for Additive Functionals

Let Xn, n ≥ 0 be an ergodic E-valued Markov chain with stationary measure
m, as in Theorem 3.1. Let Sn =

∑n−1
k=0 g(Xk) and IEm(S2

1) = σ2 ∈ (0,∞).
According to Theorem 3.1, Sn = Mn+Rn, where Mn is a mean zero martingale
and Rn satisfies (3.2). Let Wn and WM

n be the empirical measures defined in
(2.4) and (2.5) corresponding to the interpolation processes Ψn and ΨM

n defined
by (2.3) and (2.6) respectively. By Theorem 2.2, Wn converges weakly to the
Wiener measure W on C[0,∞). To conclude our analysis we invoke a martingale
LDP [5], applied here to WM

n , and show that WM
n and Wn are LDP equivalent.

Lemma 4.1. If

lim
n→∞

1

log n
log IP{|Ψn − ΨM

n |φ > ε} = −∞ , (4.1)

then (Wn) ≡ ( 1
L(n)

∑n
k=1

1
k δΨk∈·) and (WM

n ) ≡ ( 1
L(n)

∑n
k=1

1
k δΨM

k ∈·) are equiva-
lent with respect to LDP.

Proof. By the above lemma, we need to verify

lim
n→∞

1

log n
log IP{dφ(Wn,W

M
n ) > ε} = −∞ , (4.2)

where dφ is defined in (2.13). For f ∈ C(Cφ, IR), ‖f‖L ≤ 1
2 we have

∣

∣

∣

∣

∫

f dWn −
∫

f dWM
n

∣

∣

∣

∣

≤ 1

L(n)

n
∑

k=1

1

k
|f(Ψk) − f(ΨM

k )|
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=
1

L(n)

[nε/2]
∑

k=1

1

k
|f(Ψk) − f(ΨM

k )| + 1

L(n)

n
∑

k=[nε/2]+1

1

k

|f(Ψk) − f(ΨM
k )|

|Ψk − ΨM
k |φ

|Ψk − ΨM
k |φ ≤ L([nε/2]

L(n)
+
L(n) − L([nε/2])

2L(n)
sup

1+[nε/2]≤k≤n
|Ψk − ΨM

k |φ

≤ ε

2
+

1

2
sup

1+[nε/2]≤k≤n
|Ψk − ΨM

k |φ

whence

IP{dφ(Wn,W
M
n ) > ε} ≤ IP{ sup

1+[nε/2]≤k≤n
|Ψk − ΨM

k |φ > ε}.

Condition (4.1) implies that for every ε > 0 and N > 0, there exists k0 such

that for any k ≥ k0, |Ψk − ΨM
k |φ < k−

2N
ε k−2. Therefore,

IP{dφ(Wn,W
M
n ) > ε} ≤

n
∑

k=[nε/2]+1

IP{|Ψk − ΨM
k |φ > ε}

≤
n
∑

k=[nε/2]+1

k−
2N
ε k−2 ≤ n−N

∞
∑

k=1

k−2 = cn−N ,

where c is a positive constant and (4.2) holds.

Assume in addition to the conditions of Theorem 3.1 that
∑∞

k=n exp(−ϕ(k))
< 1

nγ , for any positive γ, for large n (for example, ϕ(x) ∼ xα, α > 0).

Theorem 4.2. The sequence (Wn) satisfies the large deviation principle
with constants (log n) and rate function I|M1(Cφ) defined in (2.11), that is, for
any Borel set A ⊆ M1(Cφ),

− inf
A◦
I ≤ lim inf

n→∞
1

log n
log IP{Wn ∈ A}

≤ lim sup
n→∞

1

log n
log IP{Wn ∈ A} ≤ − inf

Ā
I ,

where M1(Cφ) := {Q ∈ M1(C[0,∞)) : Q(Cφ) = 1}, and φ is defined in (2.9).

Proof. By Lemma 4.1 it suffices to check that (4.1) holds. We have

IP{|Ψk − ΨM
k |φ > ε} = IP

{

sup
t∈IR+

|Ψk(t) − ΨM
k (t)|

φ(t)
> ε

}

= IP







sup
1≤k<∞

sup
t∈[ k−1

n
, k
n

]

1

σ
√
n

|R[nt] − (nt− [nt])(R[nt]+1 −R[nt]|
φ(t)

> ε






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≤ IP

{

sup
1≤k<∞

|Rk| > εσ
√
nφ(

k

n
)

}

≤
n
∑

k=1

IP

{

|Rk| > εσ
√
n

√

(

k

n

)ε
}

+

∞
∑

k=n+1

IP

{

|Rk| > εσ
√
n

√

k

n
Log(

k

n
)

}

≤ nIP{|Rk| > εσ
√
n}

+

∞
∑

k=n+1

IP{|Rk| > εσ
√

3k}≤c41n exp(−c42 4
√
n)+c43n exp(−ϕ(n))+ n−γ ,

which ends the proof.
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