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Abstract: Under certain conditions, solutions of the nonlocal boundary value

problem, y™ = f(z,y,y/, ...,y™ V), y(x;) = y; for 1 < i < n —1, and
Y(zn) — Y opey riy(mi) = yn, are differentiated with respect to boundary con-
ditions, where a < 71 < 2 < -+ < Tp_1 < M < - < Ny < T, < b,

1y ooy Tms Yls - -5 Yn € R.
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1. Introduction

In this paper, we will be concerned with differentiating solutions of certain
nonlocal boundary value problems with respect to boundary data for the n-th
order ordinary differential equation,

v = flyyytY), a<a <, (1)

satisfying
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Ms

k=1
where m e N, a <1 <29 < -+ < xp1 <M <+ <y < xp, < b, and
YlyevosYny 1y, € R, and where we assume:
(i) f(z,u1,...,up): (a,b) x R™ — R is continuous,
(ii) gj (z,u1,y ... uy) : (a,b) x R — R are continuous, 1 < i < n, and

(iii) Solutions of initial value problems for (1) extend to (a,b).

We remark that condition (iii) is not necessary for the spirit of this work’s
results, however, by assuming (iii), we avoid continually making statements in
terms of solutions’ maximal intervals of existence.

Under uniqueness assumptions on solutions of (1), (2), we will establish
analogues of a result that Hartman [9] attributes to Peano concerning differ-
entiation of solutions of (1) with respect to initial conditions. For our differ-
entiation with respect to boundary conditions results, given a solution y(x) of
(1), we will give much attention to the variational equation for (1) along y(x),
which is defined by

2 = —k(;c,y(g;), y'(@), ..y D (@) (3)

Interest in multipoint boundary value problems for ordinary differential
equations has been ongoing for several years, with much attention given to
positive solutions. To see only few of these papers, we refer the reader to
papers by Bai and Fang [1], Gupta and Trofimchuk [8], Ma [17], [18], Sukup
[24] and Yang [25].

Likewise for equations on time scales, we suggest the manifold results in
the papers [2]-[6], [9]-[14], [16], [19]-[23]. In fact, smoothness results have been
given some consideration for (1), (2) when n = 2 and for specific and general
values of m; see [7] and [15] as well as arbitrary n; see [12].

The theorem for which we seek an analogue, attributed to Peano by Hart-
man, can be stated in the context of (1) as follows:

Theorem 1. (Peano) Assume that, with respect to (1), conditions (i)-
(iii) are satisfied. Let xg € (a,b) and y(z) = y(x,zg, c1,¢2,...,¢,) denote the
solution of (1) satisfying the initial conditions y~Y (z¢) = ¢;, 1 < i < n. Then,

(a) foreach1 <i <n, %(x) exists on (a,b), and a; := g—é’i(az) is the solution
of the variational equation (3) along y(x) satisfying the initial conditions,

Oég-iil) (1‘0) = 51']'7 1 < i,j <n.
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(b ) 7o () extists on (a,b), and 3 = g—gﬁyo(:z:) is the solution of the variational
equat1on (3) along y(x) satisfying the initial conditions,
5@—1)(950) =—yD(z), 1<i<m.

(o) (%0 Zy ().

In addition, our analogue of Theorem 1 depends on uniqueness of solutions
of (1), (2), a condition we list as an assumption:

(iv) Given a < 1 < 29 < -+ < Tpog < M < o0 < Ny < Ty < b, if
y(wi) = 2(xi), 1 <i <n—1, and y(an) =35 rry(ne) = 2(zn) = 325l Te2(0),
where y(z) and z(z) are solutions of (1), then y(z) = z(x).

We will also make extensive use of a similar uniqueness condition on (3)
along solutions y(z) of (1).

(v) Given a < 21 < w9 < -+ < Tp1 <M < -+ < N < T, < b, and a
solution y(z) of (1), if u(z;) =0, 1 <i<n-—1, and u(z,) — > - rru(ng) =0,
where u(x) is a solution of (3) along y(z), then u(z) = 0.

2. An Analogue of Peano’s Theorem for (1), (2)

In this section, we derive our analogue of Theorem 1 for the nonlocal boundary
value problem (1), (2). For such a differentiation result, we need continuous
dependence of solutions on boundary conditions and parameters. Such conti-
nuity is an application of the Brouwer Invariance of Domain Theorem and was
established in [13]. We state the Continuous Dependence Theorem here:

Theorem 2. (Continuous Dependence) Assume (i)-(iv) are satisfied with
respect to (1). Let u(z) be a solution of (1) on (a,b), and let a < ¢ < z1 <
To < < Tpg <M< - <N <z, <d<bandry,...,r, €R be given.
Then, there exists a d > 0 such that, for

lx; —ti] <0, 1<i<n,
i =7l <0, |ri—pil <6, 1<i<m,
\u(xi)—yi\<(5, 1<i<n-—1,

and

m
= rpu(ng) — ynl <6,
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there exists a unique solution us(x) of (1) such that

ud(t;) =y, 1<i<n-—1,
m

us(tn) — Zpkué(Tk) = Yn,
k=1

and for1 < j <mn, ugjfl)(az) converges uniformly to w9~ (z) as § — 0 on [¢, d].

3. Main Result

We are now in a position to state the main result of this paper.

Theorem 3. Assume conditions (i)-(v) are satisfied. Let u(x) be a solu-
tion of (1) on (a,b). Let n > 2, meN,anda < z1 < x93 < -+ < Tp_1 <M <

e <y <xp<bandry,...,rm,ul,...,u, € R be given, so that
w(x) = u(T, 1, o Ty ULy ooy Uy My e ey Ty Ty e - o5 T )y
where
m
u(x;) =uy 1 <i<n-—1, u(xy,) — Zrku(nk) = Up,.
k=1
Then,

(a) for each 1 < i < n, %(m) exists on (a,b). Moreover, for each 1 < j <

n—1,y;:= %(m) solves (3) along u(x) satisfying the boundary conditions

m
yi(ri) =05, 1<i<n—1,  yilwn) = > rey(me) =0,
k=1

and y,, 1= a‘%z(:z:) solves (3) along u(x) satisfying the boundary conditions

m
yn(2i) =0, 1<i<n—1, ynlwn) = D> reyn(ne) = 1.
k=1
(b) for each 1 < i < n, g—;(az) exists on (a,b), Moreover, for each 1 < j <

n—1,z = g—;(a:) solves (3) along u(x) satisfying the boundary conditions

m
() = —u/(x)dij, 1<i<n—1,  z(zn) = > reyi(ne) =0,
k=1
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and zy, = 8‘1“ (x) solves (3) along u(x) satisfying the boundary conditions
m
Zn(xz) =0,1<i:<n-—-1, Zn(xn) - Tkyj(nk) = _u/(djn)'
k=1
(c) for 1 < j <m, g—%(a:) exists on (a,b), and w; = g—(a:) is the solution

of (3) along u(zx) satisfying

wij(z;)) =0,1<i<n-1, wj rrw;(ng) = rju'(nj).

Ms

k=1

(d) for 1 < j < m, g—ruj(ac) exists on (a,b), and v; := g—fj(az) is the solution

of (3) along u(x) satisfying

Ms

vi(z;) =0, 1<i<n-—-1, v rrvi(ne) = u(n;).
k=1

Proof. Before beginning the proof, we remark that occasionally we will
suppress some limits of summation, arguments, or subscripts for the sake of

space.

For part (a), let 1 < j < n — 1, and consider BT“J_, since the argument for

8‘971; is similar, we withhold its proof. In this case we designate, for brevity,

UW(T, T1y ey Ty Uy oo s Uy My e o s Tns Ty - -+, Tm) DY w(2, u5).

Let 6 > 0 be as in Theorem 2, 0 < |h| < ¢ be given, and define

1
yjh(x) = E[u(xvuj + h‘) - U(JL‘,U]')].
Note that u(z;,u; + h) = u; + h, and u(z;,u;) = u;, so that, for every h # 0,

1
yin(s) = 2 luj +h =]
=1.
Also, for every h £ 0, 1 <i<n-—1, i # j,

yin(zi) = - [u(zi uj + h) — w(zi, uy)]

and for h # 0,

y]h Tp) Zrky]h k) _[u(xmuj +h) — U(ijuj)]
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"y
- f[u(mﬁ uj + h) — u(ng, uj)]
k=1
1
:E[un Uy
=0.

For 2 <i <n, let
B = ul (@, uy),
and
e = €;(h) = ulY(zj,u; + h) — Bi.
By Theorem 2, for 2 < i <n, ¢ = ¢;(h) — 0 as h — 0. Using the notation

of Theorem 1 for solutions of initial value problems for (1), viewing the solution
u(x) as the solution of an initial value problem, and denoting the solution

w(x) = y(z,z5,uj, B2, B3 ...,0n), we have
1
yin(r) = E[y(x,xj,uj +h,B2+€2,...,0n+€) —ylz,z5,u5,B2,...,0)]

Then, by utilizing a telescoping sum, we have
1
y]h(x) :ﬁ [y($7 Ty, Uj + h7 /82 + €2,. .. 7571 + Gn)

—y(x,zj,u;, 02+ €2,...,0n + €n)
+y(x,xj,uj, P+ €, ..., 0, +€n)
—ylx,zj,uj, B2, ..., Bn + €n)
+y(x, xzj,uj, B, ..., 00 + €n)
(g, o, )]

By Theorem 1 and the Mean Value Theorem, we obtain

1
y]h(x) :ﬁal(may(xvxjvujaﬁQ + €9,... aﬁn + En))(u] +h— u])
1
+ EQQ(xvy(maxjaujaﬁQ +€2,... 7/871 + 671))(52 + €3 — ﬁ?)

1 _
+ -+ EOén(fb‘,y(ﬂfaﬂ?jan,ﬁ% s 7/877, + en))(ﬁn + €n — ﬁn)>
where ag(z,y(-)), 1 < k < n, is the solution of the variational equation (3)
along y(-) satisfying,

a](;*l)(xj) =i, 1 <i<n.

Furthermore, u; + h is between u; and uj; + h, and for 2 < i < n, §; + € is
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between (; and (3; + ¢;. Now simplifying,
yin(z) =ar (2, y(z, 5, uj + h, B+ €2,. .., B + €1))

€ _
+ %2062(3373/(55‘,553‘,%752 + €2,. .. 7/877, + en)

€ _
+ Enan($7y(xaxjauj7ﬂ27 cee 7/871 + En))

Thus, to show }llirr%) yjn(z) exists, it suffices to show, for 2 < i < n, th &
exists.
Now for 1 <i<n-—1, i #j,
€9 €
0= yjn(z;) = ar(zi, y(+)) + %OZZ(J%ZU(')) +oee fan(l“i,y(‘)),

and
m

0 =y;n(xn) Z?“kygh Mk» Y
k=1

=a1(Tn, Y Z?”kal Nk Y
€ m
2
+ i [Otz (Tn,y ZTW? Mk Y ]
k=1

€

+ ;;|:05n Tn,Y Zrkan Nk, Y :|

Hence, we have a system of n—1 equatlons Wlth n— 1 unknowns (note the z;th
equation is omitted):

—a(@1,9()) = 2@, y() + - + Zan(z1,y()

h h
€2 €n
—aq(x,y(-)) = Eaz(l‘my(')) +-o %an(@,y('))
—Q xn, ZTk;Oél Nk, Y
k=1
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+ % n(Tns Y Zman Mk Y
k=1
Define the following matrices:

— = €=
—Oél(l'l,y(l',l'j,uj+Zb,ﬂ2+€2,.--,/3n+€n)) €9
_a1($27y(x7xj7uj+h7/82+627"'7/8n+6n)) E

) &
7: ) h )
_al(xn7y(xuxjuuj+hw82+€27°°°7ﬂn+6n))_
_ €n
> rean (O, y(@ g, ug + b Bo+ €2, B+ €n)) n
k=1
and

M(h) =
OéQ(l'l,y(')) a3(x1,y(-)) e Oén(l‘l,y('))

s (z2,y(+)) ag(@2,y(1)) - an(z2, ()
a2 (n, y(+))— az(n,y(-))— (2, y(+))—

ke (ks y() o rkas(mey() o Do rkam (e, y(+)
Then the system of equations written in its matrix form is
—a = M(h)e.

Note that in the matrix M (h), the solutions y(-) that each « is along are
not identical. Thus we consider the matrix

M =
(w1, u()) ag(w,u(@) o ol u())
042(56‘2,U(33)) 043(3327U(55‘)) Oén(fb‘%u(l“))
oa(tmu(@)) =~  os(@n u(z)— e, ()~

> rkee(nes w(@) Yo reas(me, w(@)) - Yo ream (e, u(@))
We claim det(M) # 0. Suppose to the contrary that det(M) = 0. Then
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there exist pa, p3,...,pn € R not all zero such that

ag(zy,u(z)) an(z1,u(z)) 0
as(xe, u(z)) o (z2, u(x)) 0
p2 : + -+ pn : =|:1,
g (p, u(z))— (T, u(T)) —

> ro(n, u(x)) >_rom(n, u(z)) 0
where the limits of summation and the subscripts of r and n have been sup-
pressed.

Let
w(, u(z)) = pacea (&, u(z)) + pacis(@,u(@)) + - + Prcin(z, u(z)).
Then
w(zi,u(x)=0,1<i<n-—1,

and
m
$n7 Z Tk:an ,r]k:7 7
k=1
which when coupled with hypothesis (v) yields po = p3 = --- = p, = 0. This

is a contradiction to the choice of p;’s. Hence det(M) # 0 which means M
has an inverse. Hence, as a result of continuous dependence, for h # 0 and
sufficiently small, det(M (h)) # 0 implying M (h) has an inverse, and therefore,
we can solve for each €;/h, 2 < i < n, using Crammer’s rule:

ei(h) 1

no W)

az(z1) - ag—a(z1) —ay (@) e ap()
052(7;71)_ | Oéi—2('xn>_ —a1(.:cn)+ | an(n)— |

Yoras(n) oo dorai—a(n)  domkea(n) oo doran(n)

where each solution a;, 1 < i < n, is along its particular y(-).

Note as h — 0, det(M(h)) — det(M), and so for m; <i <n—1, ¢(h)/h —
det(M;)/ det(M) := A; as h — 0, where M; is the n — 1 x n — 1 matrix found
by replacing the appropriate column of the matrix deﬁning M by

col[— ar(zr,u(z)), ..., —ag(zp, u(x)) + ZTkOél (k> u ]
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Now let y;(z) = }llirr%) yjn(), and note by construction of y;p(x),

(o) = Ge(o)

Furthermore,
y](l‘) = }llli%y]h(x) :al(xvy(maxjaujvﬁ% o aﬁn))

+A2a2($7y(xuxjuuj7ﬁ27"'7/811))
_|_...
+Anan(x y(l‘ :Cjaujvﬁ% aﬁn))

=aq (z,u(x —i—ZAalxu

which is a solution of the variational equation (3) along u(x). In addition,

yj(i) = lim yjn(zs) = 6, 1 <i<n—1,

and
e Zrkyg M) = hm Yin(Tn) Zrky]h nk) | = 0.
k=1
This completes the argument for (%‘.
For part (b), let 1 < j <n-—1, and con81der , since the argument for
is similar, we omit its proof. This time we d681gnate w(x, @1, . Ty, UL, - ,un,

Mooy s Ty Tm) by u(x, x;).
Let 6 > 0 be as in Theorem 2, let 0 < |h| < § be given, and define

1

zZin(x) = —[u(z,z; + h) —u(z, ;)]

Note that for h # 0,

zin(x) :%[U(% zj +h) — u(zj, z;)]

>

1
:E[u(a:j, xj+h)—u(zj+h,z;+h)

+u(zj+h,x; +h) —u]
1
=~ ~lulee oz + 1)
- — u’(c$j7h, zj+h),

where ¢, p, lies between x; and z; + h.
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Also, for 1 <i<n-—1, i+# j, and h # 0,

1
Zjn(i) =7 [w(@s, 25 + h) — u(z, ;)]
1
:E[Uz ui
=0.
In addition,
m 1 m
Zin(n) = > Trzin (k) = [u(@n, 2 +h) — > riuli, 5+ h)
k=1 k=1
— {u(zn, x;) Zrku My T5) }
1
:E[un = Un]
=0,

for every h # 0.
Next, for 2 < i < n, let
Bi = u"V (), z5),
e = ¢;(h) = uY(x;,2; + h) - Gi,
and
e1 = €1(h) = u(zj,z; + h) — uj.

By Theorem 2, for 1 < i < n, ¢ — 0 as h — 0. As in part (a), we
employ the notation of Theorem 1 for solutions of initial value problems for
(1). Viewing the solution u(z) as the solution of an initial value problem,
uw(x) = y(z, zj,uj, 02,03, ..., 0n), and using a telescoping sum, we have

[y(z,zj,uj +€1,82 + €2,...,8n + €n)

EIH

zjn(z) =

y(l‘ :ijuj)ﬁ% s 7/871)]

1

ﬁ[y(Q:,x],U] +€17ﬁ2+627'~7ﬂn+6n)
(x>$j7uj)ﬁ2+627"'7ﬁn+6n)

+y(x>$j7uj’ﬁ2+627"'>ﬁn+6n)

__|_...

_y($7xj7uj7ﬂ27"' 7/871 +€n)
+y($7xj7uj7ﬁ27"' 7/871 +€n)
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- y($7xj7uj7ﬂ27 s 7/871)]
Applying the Mean Value Theorem and Theorem 1,

1 _
Zin(x) :E[flal(%?/(%xpuj +é,02+e€,...,.0h+en))
_|_ “ e

+ Enan(m> 2/(337 T, Usj, ﬁ?v s 7/877, + En))]a
where, for 1 < i <n, € lies between (3; and ;+¢;, and for 1 < k < n, ag(z,y())
is the solution of (3) along y(-) satisfying,
a](; 1)(3:]-) =i, 1 <i<n.

€
Hence, to show }llirr%) zin(x) exists, it suffices to show for 1 < i < n, hm L

exists. From above,

€1
lim — = lim z;,(x
h—0 h  h—0 "’ ()

:—}lllmu (Cajhsj + )
= — /().
Now, by construction, for 1 <i <n — 1,7 # j,
€1 €2 €
0= zjp(w;) = ﬁal(%‘»y(')) + ﬁ%(ﬂ?i,y(')) +o Znan(ﬂ%y(')),
and

—z]h xn § Tk‘z]h Nk, Y

o (e, y(+)) | +

:E [al(djna y())

M: T

%2 [az(fﬁmy(')) - Tka?(nk’y('))]

=
Il
—

€n
+h

an Tn,Y E TEOp nka ] .

Hence, we have a system of n — 1 equations with n — 1 unknowns (note the
xjth equation is omitted):

d(ajon ((@1,y()) = Foa(rr,y() +--- + Fan@ry()
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/(@) (w2, () = Fan(en,y()) + - + Tan(e2,y()

NE

' (25) [ (s y ()= D e (s ()|

k=1
=2 ay(n,y()) — Y raca (e, (1)
k=1
_l’_ .
4 [ () = 3 rvcen e, ()]

Eod

=1
which we can represent as a matrix equation u'(z;)o = M (h)e, similar to the
matrix equation from part (a).

At this point, we omit the part of the proof where we solve show M (h) has
nonzero determinant as it is nearly identical to the method used in part (a).
Instead, we simply provide the formula for each €;/h, 2 <i <n:

noMm)
az(r1) 0 aia(w) U'(Cx]-,h)al(ﬂﬁl) an(z1)
ag(g}n)— ai,g(‘xn)— u'(cw;.,h)x ' an(x'n,)— ’

Yorag oo D oraj_e [ar(xy) =Y rag] - dorap
where each solution «;, 1 <i < n, is along its particular y(-). As a result of
continuous dependence, we are able to take the limit for each ¢;/h, 2 < i < n.
Denote }Lir%ei/h =DB;, 2<i<n.

Now let zj(z) = }llirr%) zin(x), and note by construction of z;(x),

ou

zj(@)
Furthermore,
Z](.’E) = }Lli%zjh(aj) = - ul(xj)al(a:,y(x,xj,uj,ﬂg, cee 7ﬂn))

+ 32062(3373/(55‘»%,%‘752, cee aﬁn))
+ “e
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+Bn0én($ y(x x]uu]7ﬂ277/8n))
=—u/(z)o1(z,u(x) +ZBal$u

which is a solution of the variational equation (3) along u(z).

In addition, from above observations, z;(x) satisfies the boundary conditions

zj(x;) = }Lir%zjh(mi) = —§ju'(z;), 1 <i<n-—1,
and
zj(x Zrkzj (k) = hm Zjn(x2) Zrkzjh k)| = 0.
k=1

0
This completes the proof for 7“]

For (c), we fix 1 < j <'m, and this time we designate
UW(T, 1,y Ty WLy ey Uy My w ey s T - -, Tm) DY u(2,15).
Let 6 > 0 be as in Theorem 2, let 0 < |h| < d be given, and define
1
Note that for h # 0,

m

win (@)=Y rrw;n (k)
=1

i

1 m
:E [u(:cj,nj +h) — Zrku(ﬁkﬂh + h)
k=1

m
l‘], +Zrku 77k777] i|
k=1

1
:E [u(:cj,nj +h) — Zrku(ﬁkﬂh + h)
k=1

— Tju(ﬁj +h,nj + h) + rju(nj + h,nj + h) — un]
oy
=Tju (an,hv??j +h),
where ¢, , lies between 7; and 7; + h. Also, for 1 <i<n—1and h#0

win(x;) :%[U(l‘i,nj + h) —u(zi,ny)]
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=0.
Next, for 2 <i < n, let
ﬁi = u(i_l) (.T], 77])7
and
€ = El(h) = u(iil)(l‘j,’l’]j + h) — BZ

By Theorem 2, for 2 < i < n, ¢ = €(h) — 0 as h — 0. We em-
ploy the notation of Theorem 1 for solutions of initial value problems for
(1). Viewing the solution u(z) as the solution of an initial value problem,
uw(x) = y(z,zj,uj, 02,03, ..., 0n), and using a telescoping sum, we have

1
wip(z) :E[?J(%xjwp@ +e€2,..., 00+ €n)
- y(xvxjaujvﬁ% s >ﬁn)]

[y(xaxjauj7ﬁ2 +€27"' 7571 +€n)

S

—y(@,xj,u5,B2, ..., Bn + €n)

+y(z,zj,uj, P, ..., 0+ €n)

—ylx,zj,u5, B2, ..., )l
Then, by the Mean Value Theorem and Theorem 1,

Wi (@) =y s,y 75,45, B+ 60, B+ ) (B €2 — )

+ P
+ Oén(ﬂij(l‘,fﬁjjuj,ﬁ% s 7671 + En))(ﬁn +€n — ﬂn)]
€
25042(1’7?/(%33]'7%'752 + EQ: cee 7571 + En))
+ P

€ _
+ Wnan(l',y(l',l'j,u]',ﬁg, s 7/871 + 671))7
where, for 2 < i < n, ¢ lies between (; and §; + ¢;, and, for 1 < k <
n, ag(z,y(-)) is the solution of (3) along y(-) satisfying
a,ii_l)(xj) = Oik, 1 < ) <n.

€
Thus, to show }llin% wjp(x) exists, it suffices to show, for 2 <1i < n, }llin% =
exists. Now for 1 <i<n—1, i # j,

0 = wyn(es) = Fanlany() + Fas(@ny()) +- -+ Fanlaiy()),
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and
m

Tju,(cﬁjﬁ’ n; + h) ijh(l‘n) - Z Tkwjh(nka y(+)
k=1

€2
:ﬁ [ xnv ZrkOQ Nk, Y ]

] m
+ f a3 xn7 Z’I“kag nk’ ]
k=1
+ ...
] m
+ Zn O‘n(ajmy()) - Zrkan(nk7y('))] :
k=1

Hence, we have a system of n — 1 equations with n — 1 unknowns (note the
x;jth equation is omitted):

€
0= Zas(w1,y() + - + 7oz, (),
h h
€9 €n
0= —042(1‘27?/(')) + -+ an(l‘Quy('))u
h h
€ m
rit (Cy 5 + 1) Zf [042 (Tn,y ZTkOQ Mk, Y ]
k=1
+ % an(Tn,y Zrkan Mk, Y ] ,

which we can represent as a matrix equation o = M (h)e, similar to the matrix
equation from part (a).

As was done in part (b), we omit proof that M (h) has nonzero determinant.
Instead, we simply provide the formula for each
€/h, 2<i<mn:
h [M(h)]

X
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ag(azl) Oéifg(xl) 0 Oén(l‘l)

a2($n)_ ai72($n)_ an(xn)_
Yorag oo Yoraig (e n) e Doron
where each solution «;, 2 < i < n, is along its particular y(-). As a result of
continuous dependence, we are able to take the limit for each ¢;/h, 2 < i < n.
Denote }lLii%ei/h =C;, 2<1<n.

Now let w;(x) = ]lzirrb wjp(x), and note by construction of w;(x),

ou
wy(@) = 5 (2).
j
Furthermore,

wle) =i ()

= Z Ciai(@,y(@, xj,uj, B2, ..., Bn))

1=2

= Z Ciai(x,u(x))
=2

which is a solution of the variational equation (3) along u(x).

In addition, from above observations, w;(x) satisfies the boundary condi-
tions

wj(z;) = im wjp(x;) =0, 1 <i <n—1,

h—0
and
m
wj(xn Zrkwj nk)) = hm w]h wn Z"”kw]h 77k = Tjul(nj)'
k=1

This completes the proof for 8—1;_.

It remains to verify part (d). Fix 1 < j < m as before and consider
2,0 <

Qu 0 < |h] < 0 be given, denote
m)

oy Again, let & > 0 be as in Theorem

UW(T, Ty ooy Ty ULy e ey Upyy My e e vy Ty Ty v e e 5 T
by u(x,r;), and define

vin(z) = 7 [u(@,rj +h) —u(z,7))].

blr—‘
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Note that for h # 0,

m

U]h .I] Zrkv]h 77k
k=1

[ (xj,7m5 4+ h) Zrku(nk,rj +h)
k=1

:IH

m
u(zj,75) +ZTI<:U (e, 75) ]
k=1

[ (xj,7m5 + h) Z rEw(ng, 75 + h)
k=1

:IH

— hu(nj,rj + h) + hu(nj,r; + h) — un}

=u(nj,rj + h).
Also, for 1 <i<mn—1and h#0

vn(Ti) :%[u(ﬂfiy rj 4 h) —u(zi, )]

Now, for 2 < i <n, let
Bi = u(iil)(x% 7“]'),

and

e = €(h) = ulD(z;, 7 + h) — Bi.

By Theorem 2, for 2 < i < n, ¢ = ¢(h) — 0as h — 0. We em-
ploy the notation of Theorem 1 for solutions of initial value problems for
(1). Viewing the solution u(x) as the solution of an initial value problem,
w(x) = y(z,zj,uj, B2, 33,...,0,), and using a telescoping sum, we have

1
’Ujh(l‘) :E[y(xvxjaujaﬁQ + €2,. .. 7/877, + en)

y(l‘ xja“j)ﬁ?a' .- 7/871)]

:IH

—Z/(fﬁafﬁj,Uj»ﬁz,---aﬁn‘i‘%)
+Z/($>$j,uj>52,---aﬁn+€n)
__|_...

[y(x x]yu]wBQ + €2,... 7/871 +€TL)
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—y($,$j7uj',/827...7ﬂn)].
By the Mean Value Theorem and Theorem 1,
1
vjn(x) Zﬁ[az(ﬂfay(ﬂfwjyuj,@ +€,...,00 +€)) (B2 + €2 — ()
S
+ an(xay(xawjauj)ﬁ% s 7677, + En))(ﬁn + €n — ﬂn)]
€ _
2502(1’7?/(%%&“3’;52 + €2, ... 7571 + En))

S

€ _
+ Wnan(xay(xvxjvujaﬁ%"'aﬁn +€n))>

where for 2 < i < n, B; + ¢ lies between (3; and 3; +¢; and, for 1 < k <
n, ag(z,y()) is the solution of (3) along y(-) satisfying

oz,(;_l)(a:j) =0, 1 <i<n.

Therefore, to show }llir% vjp(z) exists, it suffices to show, for 2 < 4

IN

I € . "
n, hli% h €exX1SUS.
Now for 1 <i<n—1,i#j,
€ € €n
0= vjh(l‘i) = foa(l‘i,y(')) + ﬁa?)(ajiay(')) +o 4t Fan(@“iay(’))v
and

u(nj,rj +h) =vjp(xn) Zrkv]h k)
€2
:E xna ZrkOQ N> Y
€ N m
3
+ E .’En, Zrka3 Nk, Y ]

L k=1
4+ ...

€
+ Wn xna Zrkan Nk, Y ] .

Hence, we have a system of n — 1 equations with n — 1 unknowns (note the
x;jth equation is omitted):

€2

0= Eag(a:l,y(')) + -+ %O&n(l‘l,y(')),
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0= Zag(ma,y(-) + - + %an(:cg,y(-)),

h
m
u(nj,rj + h) Z% [ (Tn,y Z?“koa (M, Y ]
k=1
m
+ % an(Tn,y Zrkan Nk, Y ] .

k=1
which we can represent as a matrix equation a = M (h)e, similar to the matrix
equation from part (a).

As was done in parts (b) and (c), we omit proof that M (h) has nonzero
determinant. Instead, we simply provide the formula for each ¢;/h, 2 <i < n:

ei(h): 1 "

h |M(h)]

as(xy) - ai_o(71) 0 ai(ry) - ap(er)
wolin)—  miale)— o= an(ow)— |

Yorag o Y oroai—a  u(ny)  dorey - dorap

where each solution «;, 2 < i < n, is along its particular y(-). As a result of
continuous dependence, we are able to take the limit for each ¢;/h, 2 < i < n.
Denote }llinbei/h =D,;, 2<i<n.

Now let v;(z) = }llir% vjp (), and note by construction of vjj(z),

ou
vj(@) = 5—(2).
J or;
Furthermore,

o) = o)

=3 Diaule 5B )

=2

= Z Dia;(z,u(x))
i=2

which is a solution of the variational equation (3) along u(x).

In addition, from above observations, w;(z) satisfies the boundary condi-
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tions
vj(z) = }llirr%)vjh(a:i) =0,1<i¢<n-1,
and
m m
vien) = > revi(ne)) = lim vjn(za) = rrvjn(ne) | = uln;).
k=1 k=1
This completes the proof for g—ﬁ;. ]
References
[1] C. Bai, J. Fang, Existence of multiple positive solutions for nonlinear m-

[9]

point boundary value problems, J. Math. Anal. Appl., 281 (2003), 76-85.

A. Datta, Differences with respect to boundary points for right focal
boundary conditions, J. Difference Equations Appl., 4 (1998), 571-578.

J. Ehme, Differentiation of solutions of boundary value problems with re-
spect to nonlinear boundary conditions, J. Differential Equations, 101
(1993), 139-147.

J. Ehme, P. W. Eloe, J. Henderson, Differentiability with respect to bound-
ary conditions and deviating argument for functional-differential systems,
Differential Equations Dynam. Systems, 1 (1993), 59-71.

J. Ehme, J. Henderson, Functional boundary value problems and smooth-
ness of solutions, Nonlinear Anal., 26 (1996), 139-148.

J. Ehme, B. Lawrence, Linearized problems and continuous dependence
for finite difference equations, Panamer. Math. J. 10 (2000), 13-24.

J. Ehrke, J. Henderson, C. Kunkel, Q. Sheng, Boundary data smooth-
ness for solutions of nonlocal boundary value problems for second order
differencial equations, J. Math Anal. Appl., 333 (2007), 191-203.

C.P. Gupta, S.I. Trofimchuk, Solvability of a multi-point boundary value
problem and related a priori estimates, Canad. Appl. Math. Quart., 6
(1998), 45-60.

P. Hartman, Ordinary Differential Equations, Wiley, New York (1964).



256

[10]

[13]

[14]

[15]

J. Henderson, J.W. Lyons

J. Henderson, Right focal point boundary value problems for ordinary
differential equation and variational equations, J. Math. Anal. Appl., 98
(1984), 363-377.

J. Henderson, Disconjugacy, disfocality and differentiation with respect to
boundary conditions, J. Math. Anal. Appl., 121 (1987), 1-9.

J. Henderson, B. Hopkins, E. Kim, J. Lyons, Boundary data smoothness
for solutions of nonlocal boundary value problems for nth order differential
equations, Involve, 1, No. 2 (2008), 167-181.

J. Henderson, B. Karna, C. C. Tisdell, Uniqueness implies existence for
multipoint boundary value problems for second order equations, Proc.
Amer. Math. Soc., 133 (2005), 1365-1369.

J. Henderson, B. Lawrence, Smooth dependence on boundary matrices, J.
Difference Equations Appl., 2 (1996), 161-166.

J. Henderson, C. C. Tisdell, Boundary data smoothness for solutions of
three point boundary value problems for second order ordinary differential
equations, Z. Anal. Anwendungen, 23 (2004), 631-640.

B. Lawrence, A variety of differentiability results for a multi-point bound-
ary value problem, J. Comput. Appl. Math., 141 (2002), 237-248.

R. Ma, Existence theorems for a second-order three-point boundary value
problems, J. Math. Anal. Appl., 212 (1997), 430-442.

R, Ma, Existence and uniqueness of solutions to first-order three-point
boundary value problems, Appl. Math. Lett., 15 (2002), 211-216.

A.C. Peterson, Comparison theorems and existence theorems for ordinary
differential equations, J. Math. Anal. Appl., 55 (1976), 773-784.

A.C. Peterson, Existence-uniqueness for ordinary differential equations, J.
Math. Anal. Appl., 64 (1978), 166-172.

A.C. Peterson, Existence-uniqueness for focal point boundary value prob-
lems, SIAM J. Math. Anal., 12 (1981), 173-185.

A.C. Peterson, Existence and uniqueness theorems for nonlinear difference
equations, J. Math. Anal. Appl., 125 (1987), 185-191.



CHARACTERIZATION OF PARTIAL DERIVATIVES WITH... 257

[23] J. Spencer, Relations between boundary value functions for a nonlinear
differential equation and its variational equation, Canad. Math. Bull., 18
(1975), 269-276.

[24] D. Sukup, On the existence of solutions to multipoint boundary value
problems, Rocky Mtn. J. Math., 6 (1976), 357-375.

[25] B. Yang, Boundary Value Problems for Ordinary Differential Equations,
Ph.D. Dissertation, Mississippi State University, Mississippi State, MS
(2002).



258



