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1. Introduction

There has been much interest in the possibility of extending ZFC; e.g., see [1],
[8], [9], [13], [15]. Here, it is argued that this can be done cautiously, adding
axioms for which there are compelling arguments that they are true. While such
extensions are of little interest to mathematics in general, they are of interest
to set theory. They represent the adoption of facts which are held to be true,
and provide a tool for further research. For example they may be helpful in
considering yet more powerful axioms; this will be considered in a subsequent
paper [7].

The simplest example of such an axiom is “there exists an inaccessible
cardinal” (by “inaccessible” will be meant “strongly inaccessible” throughout).
This axiom could have been adopted long ago. Arguments in its favor which
will be given here are refinements of arguments already given by set theorists,
including (in reverse temporal order) Godel, Hausdorff, and Cantor.

This paper provides “more details of the justification” of assuming the ex-
istence of Mahlo cardinals, which was noted would be desirable in [6]. Section
2 discusses the principle of collecting the universe. Section 3 gives axioms for
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existence of higher inaccessible cardinals. Section 4 gives the definition and
some properties of schemes. Section 5 proves from the axioms of Section 3 that
the universe has the Mahlo property. Section 6 gives axioms for existence of
higher Mahlo cardinals. Section 7 gives a general axiom subsuming those of
Sections 3 and 6. Section 8 discusses the greatly Mahlo cardinals. Section 9
discusses an application. Section 10 discusses relativization to L. Section 11
discusses V = L.

The following notation will be used.

• Ord denotes the class of ordinals.

• Inac denotes the class of strongly inaccessible cardinals.

• △ denotes diagonal intersection.

2. Collecting the Universe

The principle of collecting the universe states that, given a sufficiently well-
described universe of sets, it may be collected into a set, thereby adding a level
to the cumulative hierarchy. This is an example of what Shoenfield calls a
“vague principle” in [14]; his example is, “there is a stage after all the stages
in S provided we can imagine a situation in which all of the stages in S have
been completed”.

As in [14], some particular methods may be singled out as qualifying. Shoen-
field gives some which are used to justify the axioms of ZFC. He also mentions
adding another, which would justify the axiom asserting the existence of an
inaccessible cardinal.

The particular methods to be considered here will make use of the system
of axioms called BGC in [12]. BGC should be taken as a true system of axioms.
The justification of ZFC given in [14] applies equally well to BGC; and BGC is
a conservative extension of ZFC. Class variables are quite useful in discussions
of collecting the universe. Further, BGC already blurs the distinction between
the universe and a suitable level of the cumulative hierarchy.

An application of the principle of collecting the universe proceeds in two
steps. Step 1 is to argue that V has some property; in a variety of cases
of interest this property may be stated in Π1

1 form. Step 2 is to argue that
reflection to Vκ for some κ holds. If V were assumed to be weakly compact
then this would be automatic. However, one goal of these methods is to argue
via the principle of collecting the universe that V is weakly compact, so initially
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at least a specific justification must be given in Step 2. In many cases of interest,
the property states some “closure conditions” on V . One must argue that these
conditions are met at some level of the cumulative hierarchy.

In the case of an inaccessible cardinal, for example, that Ord behaves like
an inaccessible cardinal follows from the axioms of BGC. Thus, V is a collection
which behaves like Vκ where κ is an inaccessible cardinal. But this collection
is well-prescribed, and should be collectible into a set. The distinction between
sets and proper classes must be blurred at the point in the cumulative hierarchy
where the axioms of BGC first become satisfied (the “initial” universe).

Other arguments in favor of making this “leap of faith” include the follow-
ing.

• ZFC does not give the “whole story” regarding adding stages to the cu-
mulative hierarchy. Axioms should be added which allow blurring the
distinction between sets and classes.

• That the blurring of the distinction should be taken as a principle of set
theory is further illustrated by extensions of ZFC more powerful than
BGC, for example the system ZFV of [6].

• BGC “describes” certain levels of the cumulative hierarchy, namely those
closed under the operations, which are “mini-universes”, in that the uni-
verse is closed.

• The “truncation” of the cumulative hierarchy at the first level where BGC
becomes satisfied is clearly absurd, once one supposes that there are such
levels. Satisfying second order replacement is no reason to stop adding
levels.

• “There exists an inaccessible cardinal” is not that much stronger a state-
ment than “ZFC is consistent”.

3. Four Axioms

This section will consider four axioms, and give justifications for adding them
to BGC, in terms of the principle of collecting the universe. To begin with,
some abbreviations are adopted.

• “α ∈ Lim(X)”, X ⊆ Ord, for “∀β < α∃γ < α(β ≤ γ ∧ γ ∈ X)”.
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• “Y = Lim(X)” for “∀α(Y (α) ⇔ α ∈ Lim(X)”. Lim(X) may be used in
formulas as a term, by standard methods.

• “Y = LimI(X)” for “Y = Lim(X) ∩ Inac”.

• “X is Y -closed”, X,Y ⊆ Ord, for “Lim(X) ∩ Y ⊆ X”.

• “X is Y -club”, X,Y ⊆ Ord, for “X is Y -closed and unbounded”.

• “I-closed” for Inac-closed.

Lemma 1. Suppose X,Xξ , Y ⊆ Ord.

1. Y is Y -closed

2. If X is Y -closed then Lim(X) ∩ Y is Y -closed.

3. If η ∈ Ord and 〈Xξ : ξ < η〉 is a sequence (coded as a class) of Y -closed
classes then ∩ξ<ηXξ is Y -closed.

4. If 〈Xξ : ξ ∈ Ord〉 is a sequence (coded as a class) of Y -closed classes then
△

ξ∈OrdXξ is Y -closed.

Proof. Part 1 follows trivially. Suppose Lim(X) ∩ Y ⊆ X, Lim(Xξ) ∩ Y ⊆
Xξ. For part 2, Lim(Lim(X) ∩ X) ⊆ Lim(X), and Lim(Lim(X) ∩ X) ∩ Y ⊆
Lim(X) ∩ Y ⊆ X. For part 3, Lim(∩ξXξ) ∩ Y ⊆ Lim(Xξ) ∩ Y ⊆ Xξ for any
ξ. For part 4, suppose α ∈ Lim(△ξXξ) ∩ Y . Let αη be a sequence in △ξXξ∩Y

converging to α. If ξ < α then some suffix of the sequence converges in Xξ to
α, so α ∈ Xξ. But this shows that α ∈ △ξXξ .

The four axioms are as follows, where X,Xξ ⊆ Ord.

I1. Inac is I-club.

I2. If X is I-club then LimI(X) is I-club.

I3. If η ∈ Ord and 〈Xξ : ξ < η〉 is a sequence (coded as a class) of I-club
classes then ∩ξ<ηXξ is I-club.

I4. If 〈Xξ : ξ ∈ Ord〉 is a sequence (coded as a class) of I-club classes then
△

ξ∈OrdXξ is I-club.

To justify Axiom I it suffices to argue that Y is unbounded, where Y equals
Inac, LimI(X), ∩ξ<ηXξ, or △ξXξ when I is 1, 2, 3, 4 respectively. Suppose α
is the largest element (this might be ∅).



SOME NEW AXIOMS FOR SET THEORY 125

For Axiom I1, V is obtained from Vα by applying the powerset operation
Ord times. The resulting universe is sufficiently well-described that it can be
collected, contradicting the claim that α is the largest inaccessible. In sum-
mary, V would not be sufficiently well-behaved with respect to the principle of
collecting the universe.

For Axiom I2, we may choose a sequence of Ord elements of X, starting
at α, to arrive at a universe which can be collected, resulting in Vβ. β is an
element of LimI(X), so α cannot be the largest such.

For Axiom I3, for γ ∈ Ord, at stage η ·γ +ξ choose an element of Cξ greater
than the elements chosen so far (greater than α at stage 0). This arrives at a
universe which can be collected, resulting in Vβ . β ∈ Lim(Xξ) ∩ Inac for each
ξ, so β ∈ Xξ for each ξ, so β is an element of ∩ξCξ. Thus, α cannot be the
largest such.

For Axiom I4, for γ ∈ Ord, at stage ξ choose βξ greater than the elements
chosen so far (greater than α at stage 0), with βξ ∈ ∩ζ<ξXζ . This arrives at a
universe which can be collected, resulting in Vβ where β = supβξ and β ∈ Inac.
For any ξ, βζ ∈ Xξ for ζ > ξ, so β ∈ Lim(Xξ), so β ∈ Xξ. Thus, β is an element
of △ξXξ. Thus, α cannot be the largest such.

4. Schemes

Schemes were defined in [5], both in the universe and in Vκ for κ ∈ Inac (they
were called systems of operations), as a tool for simplifying methods used by
Gaifman in [10]. In a (class) well-order, a sequence xα is said to approach x if
the sequence is increasing and is unbounded below x. By a (class) scheme is
meant a class which codes the following:

• A well order W on Ord, with a largest element.

• For each limit point x of W whose cofinality is less than Ord, a sequence
indexed by some ordinal which approaches x.

• For each limit point x of W whose cofinality equals Ord, a sequence
indexed by Ord which approaches x.

This definition can readily be transformed into a definition of a scheme in
Vκ for κ ∈ Inac.

Suppose F is a definable function on classes of ordinals. Given a scheme
Σ and a class X ⊆ Ord, the predicate Y = FΣ(X) may be defined, with the
following properties.
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• For each point x of W there is a class Xx.

• X0 = X.

• If x is the successor of y in W then Xx = F (Xy).

• If x is approached by yξ for ξ < η where η ∈ Ord then Xx = ∩ξ<ηXyξ
.

• If x is approached by yξ for ξ < Ord then Xx = △ξXyξ
.

• Y = Xx where x is the largest element.

FΣ is function on classes of ordinals.

5. Ord is Mahlo

Theorem 2. Suppose Axioms I1-I4 hold. For any scheme Σ, LimIΣ(Inac)
is I-club.

Proof. By induction in the well-order of Σ, Xx is an I-club for each x.
This property of Ord can be shown to be equivalent to a property which is

commonly called the Mahlo property. A class X is said to be club if Lim(X) ⊆
X and X is unbounded. A class X is said to be stationary if it has nonempty
intersection with every club class. The Mahlo property for Ord is the statement
that Inac is stationary. For the remainder of this section, facts will be stated for
classes; corresponding facts hold in Vκ for κ ∈ Inac. Some facts will be stated
in greater generality than required for Theorem 6.

Lemma 3. Suppose X,Y ⊆ Ord, Y is stationary, and X is Y -club. Then
X is stationary.

Proof. Since X is unbounded it is easy to see that Lim(X) is club. Given
a club class C, Lim(X) ∩C is club, so Lim(X) ∩ Y ∩C is nonempty, so X ∩C
is nonempty.

Lemma 4. If Y ⊆ Inac is stationary then for any scheme Σ, LimIΣ(Y ) is
Y -club.

Proof. The proof of the lemma is by induction on the point x of the well-
order. The basis is trivial. Suppose X is Y -club. Then Lim(X) ∩ Y ⊆ X, and
it follows that Lim(Lim(X) ∩ Inac) ∩ Y ⊆ lim(X) ∩ Inac, i.e., that LimI(X) is
Y -closed. Since Y is stationary Lim(X) ∩ Y is unbounded, whence LimI(X) =
Lim(X)∩ Inac is unbounded. Suppose Xξ is Y -closed for ξ < η where η ∈ Ord.
That ∩ξ<ηXξ is Y -closed follows by Lemma 1. Further, Z = ∩ξ<ηLim(Xξ) is
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club, so Y ∩Z is unbounded; and Y ∩Z ⊆ ∩ξ<ηXξ. Suppose Xξ is Y -closed for
ξ ∈ Ord. That △ξXξ is Y -closed follows by Lemma 1. Further, Z = △ξLim(Xξ)
is club, so Y ∩ Z is unbounded; and Y ∩ Z ⊆ △ξXξ.

Lemma 5. If Y ⊆ Ord is not stationary then for some scheme Σ, LimIΣ(Y )
= ∅.

Proof. Let Z ⊆ Ord be a club class disjoint from Y . Enumerate Z in natural
order as 〈αγ : γ ∈ Ord〉. Let Σ be the scheme with points Ord ∪ {∞}, with
the sequence approaching a limit ordinal α being the identity function, and the
sequence approaching ∞ being 〈αγ〉. By induction Yα ∩ α = ∅ for α ∈ Ord. It
follows that α /∈ Y∞ for limit ordinals α, whence LimI(Yκ) = ∅.

Theorem 6. For Y ⊆ Ord the following are equivalent:

a. Y is stationary.

b. For any scheme Σ, LimIΣ(Y ) is Y -club.

c. For any scheme Σ, LimIΣ(Y ) is stationary.

d. For any scheme Σ, LimIΣ(Y ) 6= ∅.

Proof. b follows from a by Lemma 4. c then follows by Lemma 3. d follows
from c immediately. a follows from d by Lemma 5.

Suppose Axioms I1-I4 hold; then by Theorems 2 and 6, Inac is stationary,
that is, Ord has the Mahlo property.

6. Some Higher Mahlo Cardinals

An inaccessible cardinal κ is said to be (strongly) Mahlo iff Inac ∩ κ is a sta-
tionary subset of κ. By results of the previous section it is easy to see that an
inaccessible cardinal κ is Mahlo iff Axioms I1-I4 hold in Vκ.

From what has been seen so far, the principle of collecting the universe
justifies extending the cumulative hierarchy to the next level where Axioms I1-
I4 are satisfied. Here we hold that this universe is sufficiently well-prescribed
that it may be collected. That is, the principle of collecting the universe may
be strengthened, to hold that the universe may be collected at stages where
Axioms I1-I4 become satisfied.

Let “Mahl” denote the class of Mahlo cardinals, and write “M -club” for
“Mahl-club” and “LimM(X)” for “Lim(X) ∩ Mahl”. Four further axioms may
be considered, as follows, where X,Xξ ⊆ Ord.
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M1. Mahl is M -club.

M2. If X is M -club then LimM(X) is M -club.

M3. If η ∈ Ord and 〈Xξ : ξ < η〉 is a sequence (coded as a class) of M -club
classes then ∩ξ<ηXξ is M -club.

M4. If 〈Xξ : ξ ∈ Ord〉 is a sequence (coded as a class) of M -club classes then
△ξXξ is M -club.

These may be justified as Axioms I1-I4, by appealing to the strengthened
principle of collecting the universe. By Lemma 1 the classes are all M -closed,
so it suffices to argue that they are unbounded. For Axiom M1, the “next
universe” containing α satisfies Axioms I1-I4, and can be collected. For Axiom
M2, let β be as in the argument for Axiom I2; then β ∈ LimM(X). The
modifications for Axioms M3 and M4 are similar.

7. A General Axiom

An axiom can be given which iterates the transition from the I-axioms to the
M-axioms, through schemes.

Merely for the sake of notation, let F1 be the functions from Pow(Inac)
to Pow(Inac). Let FL

1 be those F ∈ F1 such that for any κ ∈ Inac, F (X) ∩
κ = F (Y ) ∩ κ whenever X ∩ κ = Y ∩ κ. Such an F defines a function from
Pow(Inac ∩ κ) to Pow(Inac ∩ κ) for any κ ∈ Inac, and F (X ∩ κ) = F (X) ∩ κ,
where the notation is abused by letting F denote both the function in Ord, and
the function in κ.

For F ∈ FL
1 and a subset X ⊆ Inac, let F ∗(X) be the set of κ ∈ Inac ∩ X

such that FΣ(X ∩ κ) is stationary for all schemes Σ in κ. A version of this
operation may be found in [10].

Suppose Σ is a scheme. Define classes Mx for points x of the well-order of
Σ by recursion on x, as follows.

• M0 = Inac.

• If x is the successor of y let F be the operation Lim(X) ∩ My. Let
Mx = F ∗(My).

• If x is approached by yξ for ξ < η where η ∈ Ord then Mx = ∩ξ<ηMyξ
.

• If x is approached by yξ for ξ < Ord then Mx = △ξMyξ
.
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MΣ denotes Mx where x is the largest element.
Write “LimMΣ(X)” for “Lim(X) ∩ MΣ”. Let Axiom G be as follows. For

any scheme Σ,

1. MΣ is MΣ-club;

2. if X is MΣ-club then LimMΣ(X) is MΣ-club;

3. if η ∈ Ord and 〈Xξ : ξ < η〉 is a sequence (coded as a class) of MΣ-club
classes then ∩ξ<ηXξ is MΣ-club; and

4. if 〈Xξ : ξ ∈ Ord〉 is a sequence (coded as a class) of MΣ-club classes then
△ξXξ is MΣ-club.

The justification of this axiom is similar to the justification of M1-M4, by
induction on Σ. There are two new cases, property 1 when Σ ends with an
intersection, and when Σ ends with a diagonal intersection. Let Σξ be the
prefix of Σ ending with the point xξ, where 〈xξ〉 is the sequence approaching
the end point of Σ. MΣξ

is unbounded, so the universe is MΣξ
for all ξ, so the

universe is MΣ, so MΣ is unbounded.
The preceding justification needs to be improved, in that the statement

“the universe is MΣξ
” is vague. Cases such as Σ being ω + 1 with the identity

sequence approaching the end point are fairly clear, though.
For one example where care is required in the use of schemes, let κ be

the least element of Inac ∩ Lim(Mahl). Then κ cannot be Mahlo, else since
Lim(Mahl) ∩ κ is club, Inac ∩ Lim(Mahl) ∩ κ is nonempty.

Thus, LimIΣ(Inac∩κ) cannot be I-club in κ for all schemes Σ in κ. On the
other hand, this can be shown to hold for various Σ. For example, if α < κ then
for λ ∈ Mahl ∩ κ with λ > α, λ is α-inaccessible. It is a question of interest,
what is the smallest length of a scheme Σ such that LimIΣ(Inac ∩ κ) is not
I-club.

8. Greatly Mahlo Cardinals

It is easy to see that, for κ ∈ Inac, LimIΣ(X ∩ κ) 6= 0 for all schemes Σ in Vκ

iff X ∩ κ is a stationary subset of κ.
Club subsets of α are defined for any limit ordinal α, and the collection of

such has additional properties if α is an uncountable cardinal. More generally,
many properties hold when α is a limit ordinal of uncountable cofinality. For a
subset X of a cardinal κ ∈ Inac let Sta(X) denote the set of such α, such that
X ∩ α is a stationary subset of α.
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Let H0 denote the function on subsets of an inaccessible cardinal κ, where
H0(X) = Sta(X)∩ Inac. By remarks above, this is the same function as LimI∗,
where F ∗ is defined in the previous section. Let H1 denote the function where
H1(X) = Sta(X) ∩ Inac ∩ X.

Call a function F on subsets of an inaccessible cardinal κ a D-function if it
has the following properties:

1. if X ⊆ Y then F (X) ⊆ F (Y ),

2. F (X ∪ Y ) = F (X) ∪ F (Y ), and

3. F (F (X)) ⊆ F (X).

Say that X is F -regular if F (X) ⊆ X. It is readily verified that the family
of F -regular sets is closed under F and intersections of length < κ; and that
F (X) is F -regular for any X.

It is well-known that Sta is a D-function (Exercise 8.11 of [12]). By modify-
ing the argument, H0 may be seen to be a D-function as well. It is not difficult
to show that the Sta-regular sets are closed under △. A slight modification to
the argument shows that the H0-regular sets also are closed under △. Finally,
it follows that if Σ is a scheme in κ and X is H0-regular then HΣ

1 (X) = HΣ
0 (X).

We let H (the “Mahlo operation”) be H1.

An inaccessible cardinal κ will be said to be greatly Mahlo iff there is a
κ-complete normal proper filter of subsets of κ, containing Inac ∩ κ and closed
under H. The term “κ+-Mahlo” is also used. It is readily seen that this is so
iff, for any scheme Σ in κ, HΣ(Inac ∩ κ) 6= ∅. It should be noted that some
authors define the greatly Mahlo cardinals using Sta; however for considerations
of collecting the universe, H is preferable.

For κ ∈ Inac, if Vκ satisfies Axiom G then it is readily seen to be greatly
Mahlo. It seems likely that the converse holds, but this will be omitted here.

In [6], the “number of times” H may be iterated, starting with Inac, is
considered as a measure of the size of a large cardinal. Axiom G suggests
that this is at least Ord+, so that the universe has the “greatly Mahlo” or
“κ+-Mahlo”, property.

H is more convenient for measuring the size, whereas strengthening the
operator at successive iterations as in Axiom G is more convenient for justifying
existence.
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9. An Application

Even the system BGC+I1-I4+M1-M4 settles independent questions. A notable
example is the “exotic cases of Boolean Relation Theory” (see [3]).

10. Relativizing to L

To relativize axioms as in preceding sections to L, a definition of a constructible
class is needed. Following [16], define an R-structure for the language of set
theory to be a structure 〈M,E〉 where M is a proper class, which satisfies foun-
dation (i.e., any subset of M contains an E-minimal element), extensionality,
and the axioms stating closure under the Godel operations. An R-structure
〈M,E〉 is called a R+-structure iff it satisfies σ, where σ is any of several well-
known sentences stating that V = L.

Given an R+-structure 〈M,E〉 and a z ∈ M let XM,E,z be the class {x ∈ L
such that for some y ∈ M , yEz and the transitive closure of x (in the universe)
is isomorphic to the transitive closure of y (in 〈M,E〉)}. The constructible
classes are those of the form XM,E,z for some M,E, z.

See Theorem 3 of [6] for a proof that this definition is in accordance with
what one expects if V is taken as Vκ for some κ ∈ Inac.

Suppose Axioms I1-I4 hold in V . Since Lemma 1 holds in L, to show that
Axioms I1-I4 hold in L it suffices to show that Y as in the remarks following
the statement of these axioms is unbounded.

For Axiom I1, that InacL is unbounded follows because Inac is.

For the remaining axioms, suppose X is a constructible class which is I-
closed in L. Then Lim(X)∩InacL ⊆ X, so Lim(X)∩Inac ⊆ X, so X is I-closed.
Thus, if X is I-club in L then X is I-club.

For Axiom I2, suppose that X is I-club in L. Then X is I-club, so Lim(X)∩
Inac is I-club, in particular unbounded.

For Axiom I3, suppose that Xξ is I-club in L for ξ < η. Then Xξ is I-club
for ξ < η, so ∩ξXξ is I-club, so unbounded.

Axiom I4 is similar.

The preceding discussion should be better formalized and generalized; fur-
ther discussion is omitted here.



132 M. Dowd

11. V = L

The results of the preceding section suggest that “cautious” large cardinal prop-
erties P are down-absolute for L, that is, if P (κ) holds then it holds in L. This
in turn can be seen as evidence that perhaps V = L, and “cautious” large
cardinal theory might lead to further substantiation that this might be the
case.

Other evidence that the possibility that V = L should be taken seriously
exists. Some remarks may be found in [6]. A review will be given here.

After results of Jensen and others, interest in the possible truth of the
hypothesis of constructibility (usually abbreviated V = L) intensified; to quote
[4], “since the axiom of constructibility has applications in several areas of
mathematics now, it certainly merits attention”.

Subsequently, however, the majority of set theorists concluded that, al-
though V = L settles a great number of important independent questions, it
does so in a way which they find unsatisfactory. In particular, it implies:

1. GCH is true;

2. 0# does not exist;

3. PD is false (this follows from 2);

4. measurable cardinals do not exist (this follows from 2).

In a recent survey [2], none of the 31 respondents believed that V = L
should be accepted as an axiom.

It should be noted that there has been debate on whether independent
questions have a truth value at all. The classical position would be that any
statement in the language of set theory has a truth value. Informal metamathe-
matical arguments supporting the classical position can be given. For example,
a statement such as CH concerns very basic sets, and that it has a truth value
is a consequence of assumptions that are routinely made in model theory. Sim-
ilarly, GCH has a truth value because it has one at any cardinal (although
quantifying over all cardinals is logically more complex than quantifying over a
set).

The classical position does lead to a logical conundrum, in that even though
the statement has a truth value, we may never be sure what it is, which in turn
raises questions about the character of truth in this setting. Mathematics is
free to ignore such questions, and routinely has done so.
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From hereon, we suppose that any statement of set theory, including state-
ments known to be independent of ZFC, has a truth value. Determining this
for various questions, notably CH, has been and remains a mysterious problem
of mathematics. This question of interest to philosophers of mathematics as
well as mathematicians.

Philosophically, mathematical existence seems to be of a different character
than physical existence. Mathematicians assume the existence of mathematical
objects as a convenience; not only do sets “exist” in some sense, but they are
well-described by the notion of the cumulative hierarchy, and the axioms of ZFC
set theory. Philosophers (perhaps rightly so) find it necessary to “quibble” over
various aspects of the situation. The classical position is, that these questions
are a distraction to mathematics, which should admit that statements in the
language of set theory have a truth value in the universe of sets. The latter
concept encounters philosophical complexities, and even mathematical ones;
but determining the truth value of statements increases understanding of the
universe.

It should be a topic of interest in mathematics what new axioms might be
adopted, and why. The author’s view, which might be called the “minimalist”
view, has been that these should be, V = L, and axioms asserting the existence
of large cardinals which can be justified by mathematical theories formalizing
the principle of collecting the universe. Implicit in this view is the conviction
that no large cardinal contradicting V = L can be “built up” in this manner.
In fact, this conviction is evidence for V = L.

Other points of view have been under intensive consideration; the reader
is referred to the literature. From hereon, only the minimalist view will be
considered. From this view, axioms that contradict V = L are “pathological”.

To begin with, it is worth considering the axiom of choice. The axiom
of choice states that, given a collection of non-empty sets, there is a function
mapping each set in the collection to an element (“representative”) of the set.
Arguments in favor of it include the following.

• It is self-evident.

• Mathematicians use it constantly.

• It can be justified by informal arguments involving the cumulative hier-
archy; see [14].

A critical discussion of these and other topics may be found in [11].
Not only should the axiom of choice be taken as true, but its character can

be seen as a consideration in the evaluation of other principles. In particular,
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V = L can be seen as a “glorified” extension of it, asserting the existence of
“construction sequences” and not just the more mundane “choice functions”.

After AC, the “next” independent question is CH. In [4] it is stated that
“there is no intuitive reason for taking GCH as an axiom of set theory” (this
being so one needs to justify V = L to derive GCH). There is however a strong
argument in favor of CH, and the same argument generalizes to GCH.

CH is true iff there is a bijection of ℵ1 with P (ω). CH is false iff there
is an injection of ℵ2 into P (ω). One of these existence principles is false; and
the other is merely independent of ZFC. One can well suspect that it is the
second principle which is false, in that if it were true then it would be possible
to provide from first principles a construction of an embedding. When Godel
showed that CH was consistent with ZFC, he showed that no such construction
is possible.

Further, the independence of the first principle is not surprising. It is in-
dependent of ZF whether P (ω) can be well-ordered at all. Even assuming the
axiom of choice, we still cannot construct a well-ordering by ℵ1; however the
evidence against an embedding of ℵ2 leads one to conclude that such a well-
ordering exists.

The author discovered this argument in 1985, and it appears in print in [5].
Recently, it has appeared in a Web posting. In view of the basic nature of the
observation, it is not surprising that other authors have made it; indeed, it is
surprising that it is not more widely considered.

The injection from ℵ1 to P (ω) is of interest. It consists of the composition
of a choice function which maps a countable ordinal to a binary relation on ω
which is a well-order, and a standard injection from the binary relations on ω to
P (ω). One can see that there are various difficulties which arise in attempting
to obtain an injection from ℵ2.

Of course, a bijection of ℵ1 with P (ω) cannot be obtained either. But the
difficulties here are due to an inability to proceed. It is reported that Cantor
tried to prove CH; perhaps he attempted to find such a method.

Further remarks include the following.

• V = L is not terribly much stronger than GCH; not only does a well-order
exist, but one may be obtained in a natural manner.

• Since L is a model of ZFC, it is plausible that it is all the sets.

• Independently of GCH, it can be argued that ωL
1 = ω1. In ω1 steps, the

constructibility process should produce ω1 bijections of ω with an ordinal.
This claim of interest in itself, in that it refutes 0#. It is more direct than
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the claim that every real is constructed by stage ω1, which follows if every
real is constructible, by condensation.

A better understanding of “building up” large cardinals might very well
shed further light on the question of whether V = L.
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