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Abstract: Greedoid theory has several intresting applications in system anal-
ysis, operations research and economics. Since most of the time the aspects of
greedoid problems are uncertain, it is nice to deal with these aspects via the
methods of fuzzy logic. In this paper, we introduce the notions of fuzzy feasible
sets and fuzzy greedoids providing several examples. We show that the levels of
the fuzzy greedoids introduced are indeed crisp greedoids. Moreover, we study
some fuzzy greedoid preserving operations.
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1. Introduction

Matroid theory and greedoid theory have several interesting applications in
system analysis, operations research and economics. Since most of the time the
aspects of matroid and greedoid problems are uncertain, it is nice to deal with
these aspects via the methods of fuzzy logic. The notion of fuzzy matroids was
first introduced by Geotschel and Voxman in their landmark paper [4] using the
notion of fuzzy independent set. The notion of fuzzy independent set was also
explored in [12, 13]. Some constructions, fuzzy spanning sets, fuzzy rank and
fuzzy closure axioms were also studied in [5, 6, 7, 16]. Several other fuzzifications
of matroids were also discussed in [11, 14]. Since the notion of feasible set in
traditional greedoids is one of the most significant notions that plays a very
important rule in characterizing strong maps ( see for example [1, 15]), in this
paper we introduce the notions of fuzzy feasibles and fuzzy feeble feasible sets
providing several examples. Thus fuzzy greedoids are defined via fuzzy feasible
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axioms. We show that the levels of the fuzzy greedoid introduced are indeed
crisp greedoids.

Let E be any be any non-empty set. By (1) we denote the set of all fuzzy
sets on E. That is p(1) = [0,1]¥, which is a completely distributive lattice.
Thus let 0F and 17 denote its greatest and smallest elements, respectively.
That is 0F(e) = 0 and 1¥(e) = 1 for every e € E. A fuzzy set yp is a subset of
o, written g < po, if pui(e) < ps(e) for all e € E. If py < po and pq # po, then
i1 is a proper subset of uo, written pq < po. Moreover, 1 < o if pq < po and
there does not exist pg such that uy < s < po. Finally, uy V pe = sup{pu1, p2}
and py A pg = inf{uy, uo}. The support of a fuzzy set p is the set supp(p) =
{x € E: p(x) #0F} and m(p) := inf{{u(z) : 2 € B} — {0F}}.

Greedoids were invented in 1981 by Korte and Lovasz [10]. Originally,
the main motivation for proposing this generalization of the matroid concept
came from combinatorial optimization. Korte and Lovész had observed that
the optimality of a “greedy” algorithm could in several instances be traced
back to an underlying combinatorial structure that was not a matroid—but (as
they named it) a greedoid. In 1991, Korte, Lovasz and Schrader [9] introduced
greedoid as a special kind of antimatroids. In 1992, Bjorner and Ziegler [17]
explained the basic ideas and gave a few glimpses of more specialized topics
related to greedoids. In 1992, Broesma and Li [3] extended the “connectivity”
concept from matroids to greedoids and in 1997, Gordon [8] extended Crapo’s 3
invariant from matroids to greedoids. In this paper, we study properties of fuzzy
greedoid deletion and contraction operations and show that these operations
commute. In addition, we study some fuzzy greedoid preserving operations.

2. Fuzzy Greedoids

In this section, axioms for fuzzy greedoids are given. Properties and several
examples are also provided.

Definition 1. Let E be a finite set and let § be a family of fuzzy sets
satisfying the following two conditions:

(F1) For every u € § with u # 0F, there exists 2 € supp(y) such that
p—{z} €F, where (n — {z})(y) = pu(x), if y # = and 0¥ otherwise.

(F2) For any pui,pe € § with 0¥ < |supp(u1)| < |supp(u2)|, then there
exists p € § such that:

(i) 1 < p <y V pao.
(i) m(p) > min{m(p1), m(p2)}-
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Then the system FG = (E,F) is called fuzzy greedoid and the elements of
§ are fuzzy feasible sets of FG:

Thus every fuzzy matroid [2] is a fuzzy greedoid and a fuzzy greedoid is a
fuzzy matroid if and only if the axiom

(F3) If p € § and n < pu, then n € F.
is satisfied.

Definition 2. Let FG = (E, %) be a fuzzy greedoid. A map r : [0,1]% —
[0,00), defined by r(u) = supp{|n| : n € §,n < u} is called the fuzzy rank
function of FG.

Thus a fuzzy set p is feasible if and only if r(p) = |p| and it is called a fuzzy
basis if r(p) = |u| = |E|. The collection of all fuzzy basis of F'G is denoted by
FB(FG). Axiom (F2) implies that bases elements have same size r (or r(FG)).

Definition 3. Let FG = (E,§) be a fuzzy greedoid. For u € §, define

S\u={n<[01"—p:neg

and, if p is feasible, define

/=<1 —p:nvueg}

Then it is easy to see that the set systems obtained in both cases are fuzzy
greedoids on the ground set [0, 1]¥ — p. The greedoid FG\u = ([EF — p, §\u) is
called FG delete p or the restriction of FG to E—pand FG/u = (E—p,§/1)
is called FG contract p. For all n < [0,1]¥ — p, it is easy to see that

rra\u(n) =) and reg),(n) = r(nV p) — ().

A fuzzy greedoid FG = (E,F) is called an interval fuzzy greedoid if it
satisfies the fuzzy interval property if u < n <=, u,n,v € g, = € [0,1]%¥ — 1+,
uVaee§, and vV € §, imply that nVa € §. Thus, fuzzy matroids are
interval fuzzy greedoids.

One might ask whether the levels of fuzzy greedoid introduced are crisp
greedoids. We shall prove in this section that this is indeed the case. For this
purpose we will first recall the definition of the level of fuzzy set.

Definition 4. For r € (0,1}, let C"(u) = {e € E|u(e) > r} be the r-level
of a fuzzy set p € §, and let §" = {C"(n) : p € F} be the r-level of the family
§ of fuzzy feasible sets. Then for r € (0,1], (F,3") is the r-level of the fuzzy
set system (E,§).
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Theorem 1. For every r € (0,1], § = {C"(u) : p € §} the r-levels of a
family of fuzzy feasible sets § of a fuzzy greedoid FG = (FE,§) is a family of
crisp feasible sets.

Proof. (F1) If C"(u) € §" such that C"(u) # 0F, then there exists € E
such that p(z) > r > 0. Thus = € supp(p) and C"(u) — {z} € §".

(F2) Let C"(u1),C" (p1) € §" with 07 < [supp(C” (u1))| < [supp(C” (p2))|-
Let o = p1 V po. Then:

(i) C" (1) < C"(p) < C"(p1 V p2).
(i) m(C"(p)) = min{m(C" (u1)), m(C" (p2))}- O

To illustrate the preceding result, we next provide a non-trivial example of
fuzzy set system (F,§), satisfying the axioms (i) and (ii), and to show that the
levels of the fuzzy greedoid are crisp greedoids.

Example 1. Let E = {a,b} and let p1, uo, 13, 114 be a family of fuzzy sets
defined as follows:

[ 1/2 Je=a B 1 Je=a
U= 12 e=b0"711/2 ,e=b

[ 1/2 Je=a 1 Je=a
’u3_{ 1 7e:b’/M_{l ,e=1b
Example 2. Consider § = {u : for every x € supp(u), p — p; = {x} for
some i = 1,2,3,4}. For r € (0,1/2], C" (1) = C"(u2) = C"(u3) = C"(pa) = .
For r € (1/2,1], C"(u1) = 0, C™(n2) = {a}, C"(u3) = {b} and C"(u4) = E.
Therefore the fuzzy set system (F,§), has two distinct levels: §" = {¢}, for
r € (0,1/2] and §" = {0, {a}, {b},{a,b}}, for r € (1/2,1].

It is easy to see that (E,§") are crisp greedoids for r € (0,1] (two distinct
fuzzy greedoids and therefore two distinct families of crisp feasibles).

Next, we explore alternative ways to define several interesting fuzzy gree-
doids.

Theorem 2. Let M(E,§’) be a matroid and § = {x» : A € §'}. Then
FM = (E,§) is a fuzzy matroid [2] and thus a fuzzy greedoid.

We remark that (E,§ = {x» : A < E'}) need not be a fuzzy greedoid and as
we have seen in Theorem 2 starting with a greedoid, the set of all characteristic
functions with feasible sets as bases is a fuzzy greedoid. Hence any greedoid
generates a unique fuzzy greedoid.
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Example 3. Let FE be any set with n-elements and § = {x) : A < E,
|A| = n or |A| < m} where m is a positive integer such that m < n. Then (E, )
is a fuzzy matroid [2] and hence a fuzzy greedoid.

Definition 5. The fuzzy greedoid described in Example 3 is called the
fuzzy uniform greedoid on n-elements and rank m, denoted by Fy, . Fy, . is
called the free fuzzy uniform greedoid on m-elements.

Next, several constructions of fuzzy greedoids are discussed. We first prove
that given a non-zero X C F, every fuzzy greedoid on E generates a fuzzy
greedoid on X. Its called the induced (or relative) fuzzy greedoid on X.

Theorem 3. Let FM = (E,§) be a fuzzy matroid and X be a non-
empty subset of E. Then (X,§x) is a fuzzy greedoid, where §x = {u : Va €

po = X5 A ={x},n € F}.

Proof. Follows from the fact that FM = (E,§x = {xx Ap:p €F})isa
fuzzy matroid, see [2]. O

Let FG = (E,§) be a fuzzy greedoid, X be a non-empty subset of E and
i be a fuzzy set in X. We may realize i as a fuzzy set in £ by the convention
that pu(e) = 0 for all e € F— X. It can be easily shown that §x = {u|x : p € §},
where pu|x is the restriction of u to X.

Given any non-empty set E and a point e € E, we clearly note that G =
(E, ') is a greedoid where §' = {y < E : e € p}. This greedoid is called the
point greedoid determined by e. It heavily depends on the cardinality of E. We
say e is a fuzzy singleton on E if e(z) = 1 for all € E except one. Next, we
define the corresponding fuzzy point greedoid.

Theorem 4. Let E be a non-empty set and e be a fuzzy singleton on
E. Then (E,3§.) is a fuzzy greedoid, where §. = {p: Vo € p,u—n = {x},n €
Ul e <p,p e p(1)}}.

Proof. Follows from the fact that (E,V{u : e < pu,u € p(1)}) is a fuzzy
matroid, see [2]. O

The fuzzy greedoid described in the preceding theorem is called the induced
fuzzy singleton e-greedoid on E or simply fuzzy e-greedoid. Another type of
fuzzy point greedoids is given next.

Theorem 5. Let F be a non-empty set and e be a fuzzy singleton on E.
Then (E,§¢) is a fuzzy greedoid, where §¢ = {u : Vo € p,u—n = {z},n €
{15} Ufp:e<1F —p,pe p(1)}}).
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Proof. Follows from the fact that (E,{1"} U{u:e <1F — pu,pu € p(1)}) is
a fuzzy matroid, see [2]. O

We end this section by giving non trivial examples of fuzzy greedoids based
on the concept of fuzzy feasible sets.

Example 4. Consider E = {a,b,c} and § = {pu: Ve € y,u—n={z},n €
{17 — i p(x) = ag,a, € [0,1]}}.That is § is the collection of all complements
of constant maps. Then (E,F) is a fuzzy greedoid.

Operations as basic as deletion and contraction are those of direct sum and
ordered sum. Let FG1 = (F1,§1) and FGy = (E2,§2) be two fuzzy greedoids
on disjoint ground sets. Then their direct sum is the greedoid FGy & FGy =
(E1 U Ey, §1 ® F2), where

F1©F2={p1Vue: p €3F1 and pg € o},
and the ordered sum of FG; and FGs is the greedoid FG; ® FGy = (Ey U
E, 1 ® §2), where
31®32231U{B Vo BEB(FG;[), /LE%Q}.

Observe that 0 € §1NF2 and §1®F2 C §1DF2, thus FG1 ® F Gy is a subgreedoid
of FG1 & FGs.

3. Deletion and Contraction Fuzzy Greedoids

In this section, we study properties of fuzzy greedoid deletion and contraction
operations and show that these operations commute. We start by proving the
following.

Proposition 1. If uy is a fuzzy basis for the restriction FG|\ of FG to
A, then

S(FG/X) ={n € E—X : FG|\ has a fuzzy basis ¢ such that nVd € F(FG)}
={neE—-X:nVu €FFG)}

Proof. Clearly {n € E — X : FG|\ has a fuzzy basis § such that nV ¢ €

F(FG)} contains theset {n € E—X : nVuy € F(FG)}. Suppose nVé € F(FG)

for some fuzzy basis 6 of FG|\. We shall show that n € F(FG/)\). Clearly nV o
is a fuzzy basis of nU A, so r(nV d) = (6 U X). Therefore,

rea/a(n) =r(@UA) —r(ua) =r(n V) —r() = [nVvé|—|o| = |nl,
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that is, n € F(FG/)\). Hence,

S(FG/A)
= {n € E=X : FG|X has a fuzzy basis 0 such that nvd € F(FG)} C F(FG/N).

Finally we show {n € E— X : nV u)x € F(FG)} contains F(FG/N). If n €
S(FG/N), then

nl = TFG/A(”)
= r(nUA)—r(})
= r(nV ) — [l
Hence |[nV ux[ =7(nV py), sonV uy € §(FG). O

Corollary 1. If uy is a fuzzy basis for FG|\, then a fuzzy bases of FG /A
is
B(FG/)\) = {n€ E—X: FG|\ has a fuzzy basis § such that nV § € B(FG)}
{neE—-X:nVuxeB(FG)}.
Observe that F(FG/A) C F(FG\\) for every fuzzy feasible set A in FG.

Next, we give a necessary and sufficient condition for the contraction of a fuzzy
feasible set to be the same as the deletion of that set.

Proposition 2. If X\ is a fuzzy feasible set in F'G, then
FG/\ = FG\\ if and only if r(FG\\) = r(FG) — r(\).

Proof. Suppose FG/\ = FG\\ and let u be a fuzzy basis of FG\A. Then
w is a fuzzy basis of FG/X and hence by Corollary 1, BUpu, is a fuzzy basis of
FG for some fuzzy basis uy of FG|A. Thus

r(FG) = [pdp
= |u[+ [l
= () +r(FG\N).

Suppose r(FG\\) = r(FG) — r(\). Since F(FG/\) C F(FG\\), to show
FG/\ = FG\\, we need only show F(FG\\) C F(FG/N). But if u € F(FG\\),
then p < n for a fuzzy basis n of FG\\ and 7 is contained in a fuzzy basis nJo
of FG. Evidently

r(FG) = |oun|
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= nl +1d]
= r(FG\\) +6].

Since r(FG\\) = r(FG) — r(\), we have r(\) = ||, that is, § is a fuzzy basis
of FG|\. Hence n € B(FG/)\), so p € F(FG/A) and FG/\ = FG\\. O

Corollary 2. For all A € §, FG/\ = FG\\ if and only if r(FG\\) <
r(FG/\).

Proof. If FG/X = FG\\, then clearly r(FG\\) < r(FG/\). If r(FG\\) <
r(FG/)), then as F(FG/\) is a fuzzy subset of F(FG\\) we must have r(FG\\)
> r(FG/X). Thus FG/\ = FG\\. O

In the next proposition, we show that the operations of deletion and con-
traction commute.

Proposition 3. Let FG = (E,§) be a fuzzy greedoid. Then
(FG\MN/A = (FG/M)\A={peE—-AVA) :nVvieg}
for A\AAA=0F, NeFand A€ E.

Proof. We need only show (FG\A)/A and (FG/A)\A have the same collec-
tions of fuzzy feasible sets. If u € S(FG\A )/ then p € (F—A)—Xand pVA € 3.

That is, p € (E —\) — Aand p e 3FG/>\ and hence p € S (FG/ANA Conversely,
if 11 € §(pg s then € (E—X) —Aand p e Sra/a That is, p € (B — A=A
and © VA € § and hence p € S(FG\)\ )N Therefore, S (FG\S)/A = S(FG/)\)\ O

The straightforward proof of the following proposition is omitted.

Proposition 4. {u; V pe : u1 € B(FGy) and pe € B(FGy)} = B(FGy ®
FGy) which is equal to B(FG1 ® FGs3).

Corollary 3. Let FGy = (F1,81) and FGy = (Es,F2) be fuzzy greedoids
on disjoint ground sets. If u € Fy U Fs, then

TEGIoFG, (1) = TRGiaFc, (1) = Tra, (WA Er) + 1rG, (1 A E2).
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4. On Fuzzy Greedoid Preserving Operations

In this section, we prove the operations of direct sum and ordered sum take
interval fuzzy greedoids to interval fuzzy greedoids. In fact, we show that the
direct sum and ordered sum of fuzzy greedoids F'G; and F'G4 is an interval
fuzzy greedoid if and only if F'Gy and F'Gy are both interval fuzzy greedoids.

Theorem 6. Let FG1 = (E1,51) and FGy = (E2,§2) be fuzzy greedoids
on disjoint ground sets. Then F Gy and F Gy are interval fuzzy greedoids if and
only if FG1 @ F (G5 is an interval fuzzy greedoid.

Proof. Suppose F'G1 and FGo are interval fuzzy greedoids. If A < p <9,
M, 0 EF1 DT, € E1UE, —C, AVz€F1 DT, and 0V € F1 D Fo, then
A=A VA2 = p1Vpg, 0 =01V oy where A\, 11, 0; are fuzzy feasible sets in
FG;fori=1,2, \;Vz €F; (as \jVa = (A VAVz)NE;). Similarly, §; Va € §;.
Moreover, x € (E1 U Ey — 1) A (Fy U Ey — d2). Hence suppose = € E; — 0; for
t=1lori=2andas \; < u; <9;, 6 Vo €F,;. But

5VIE=51\/52V:L’Z((51\/1‘)\/(52631@32.

Therefore, F'G1 @& F (G4 is an interval greedoid.

Suppose F'G1 @ FG4 is an interval greedoid. If A < u < §, A\, 1,6 € §1,
x an element in By — 5, AVz € §1, and § Vz € §, then as 0F € Fo, AV
0F < uvoE <6voP, AVvOE,uvOoF,6vVOor e 51®F2, o € By UEy — 6,
(AVz)VOE, (§va)VvOF € F @ Fe and as FG1 @ FGy is an interval greedoid,
SV =(0V0E)YVreF ®Fo. But 6V = (6§ Va)NE; € F and hence FGy is
an interval fuzzy greedoid. Similarly, F'Gs is an interval fuzzy greedoid. U

Theorem 7. Let FG1 = (E1,51) and FGy = (FE2,§2) be fuzzy greedoids
on disjoint ground sets. Then F' G, and F' Gy are interval fuzzy greedoids if and
only if FG1 ® FGs is an interval fuzzy greedoid.

Proof. The proof of the necessary condition is similar to that of the direct
sum one in the preceding theorem and is left to the reader. Suppose F'G1® FGs
is an interval greedoid. If A < u <6, A\, u, 6 € F1, x € By — 4, AV x € §1, and
OVax € Fp, then \,u,d € F1®Fo, x € EyUE, — 6, AV, Ve € F®Fs
and as F'G1 ® FGy is an interval fuzzy greedoid, § V 2 € §1 ® F2. But as
51082 CF1DF2, Ve € F1DFe. Thusd Ve = (0Vae)NE € F and
hence F'Gy is an interval fuzzy greedoid. Similarly, F'Gs is an interval fuzzy
greedoid. O
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