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Abstract: The space X of all functions represented by vector valued Dirichlet
series and analytic in a half plane is considered in this paper. The space is en-
dowed with a certain topology under which X become a Frechet space. On this
space the form of linear continuous operator F from X to X is characterized.
We have also given a characterization of proper bases.
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1. Introduction

Let

f(s) =

∞
∑

n=1

anesλn , s = σ + it, (σ, t are real variables), (1.1)

where a′ns belong to a commutative Banach algebra E with identity element ω

with ||ω|| = 1 and λ′
ns ∈ R satisfying the condition

0 < λ1 < λ2 < λ3... < λn..., λn → ∞ as n → ∞. (1.2)

Let σc(f) and σa(f) be the abscissa of convergence and abscissa of absolute
convergence respectively of f. If the sequence {λn} satisfies

lim
n→∞

sup
log n

λn
= 0 (1.3)

then by [1] for each f ∈ X,
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σc(f) = σa(f) = − lim
n→∞

sup
log ||an||

λn

.

Suppose that the vector valued Dirichlet series given by (1.1) converges
absolutely in a left half plane σ < l. Then the given series represents vector
valued analytic functions in the half plane σ < l and the series is also called
vector valued analytic Dirichlet series.

B.L. Srivastava [1] defined the growth properties such as order, type, lower
order, lower type etc. of the vector valued analytic Dirichlet series taking E to
be a Banach space. He also obtained the coefficient characterizations of order
and type.

By giving different topologies on the set of analytic functions defined by
Dirichlet series of one complex variable, Kamthan and Gautam [2] obtained
various topological properties. In this paper we shall consider the space of
vector valued analytic Dirichlet series and obtain these properties.

Let X be the class of functions f represented by (1.1) satisfying

lim
n→∞

sup
log ||an||

λn
= −l , (1.4)

where l is a given positive number. For each f ∈ X, let us define

||f ||σ =

∞
∑

n=1

||an||e
σλn , for σ < l.

Thus in view of (1.4) ||f ||σ is clearly well defined and for each σ < l intro-
duces a norm on X. We denote by X(σ), the space X equipped with the norm
||...||σ . Let ρ be the topology generated by the family of norms {||f ||σ : σ < l}
which is equivalent to the topology generated by the invariant metric λ, where

λ (f, g) =

∞
∑

n=1

1

2n

||f − g||σn

1 + ||f − g||σn

,

where {σn} is a sequence such that σ1 < σ2 < ... < σn < ...; σn → l as n → ∞.

Throughout this paper we shall assume that the space X is equipped with
the topology generated by the metric λ. Now we give some definitions.

A sequence {αn} ⊆ X is said to be linearly independent if for any sequence
{cn} of complex numbers for which

∑∞
n=1 cnαn converges in X ,

∑∞
n=1 cnαn = 0

implies that cn = 0 ∀n. A subspace X0 of X is said to be spanned by a se-
quence {αn} ⊆ X if X0 consists of all linear combinations

∑∞
n=1 cnαn such

that
∑∞

n=1 cnαn converges in X. A sequence {αn} ⊆ X which is linearly inde-
pendent and spans a closed subspace X0 of X is said to be a base in X0. In
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particular, if en ∈ X, en (s) = ω esλn , n ≥ 1, then {en} is a base in X. A
sequence {αn} ⊆ X will be called a ’proper base’ if it is a base and it satisfies
the following condition:

“for all sequences {an} ⊆ E, convergence of
∑∞

n=1 an αn in X implies the
convergence of

∑∞
n=1 anen in X”.

2. Main Results

We shall prove the following result.

Theorem 2.1. The space X is a Frechet space.

Proof. Here, as defined above, X is a normed linear metric space. For
showing that X is a Frechet space, we need to show that X is complete. Let
{fα} be a Cauchy sequence in X. Hence it is a Cauchy sequence in X(σ) for
each real σ < l. Therefore, for any given ε > 0 there exists a positive integer
n0 = n0 (ε, σ) such that

||fα − fβ||σ < ε ∀α, β ≥ n0 .

Denoting by fα (s) =
∑∞

n=1 a
(α)
n es.λn , fβ (s) =

∑∞
n=1 a

(β)
n es.λn , we have

therefore
∞

∑

n=1

||a(α)
n − a(β)

n ||eσλn < ε ∀α, β ≥ n0. (2.1)

Therefore for each fixed n = 1, 2, ...,
{

a
(α)
n

}

is a Cauchy sequence in the Banach

space E. Hence there exists a sequence {an} ⊆ E such that

lim
α→∞

a(α)
n = an , n ≥ 1.

Now letting β → ∞ in (2.1), we have for α ≥ n0 ,

∞
∑

n=1

||a(α)
n − an||e

σλn ≤ ε. (2.2)

Let us denote by f =
∑∞

n=1 anen. Now it remains to show that f ∈ X. We
choose σi such that l < σi + ε. From (2.2) we have

∞
∑

n=1

||a(α)
n − an||e

σi λn ≤ ε α ≥ n1, (2.3)
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where n1 = n1 (ε, σi) . Keeping α as fixed in (2.3) and in view of (1.4) we observe
that

||a(α)
n || ≤ e(−l+ε) λn ∀n ≥ n2 ,

where n2 = n2 (ε, α) . Then

||an|| ≤ ||a
(α)
n − an|| + ||a

(α)
n ||

⇒ ||an|| ≤ εe−σi λn + e(−l+ε) λn ∀n ≥ M = max(n1, n2)

< 2e(−l+ε)λn .

Thus

lim
n→∞

sup
log ||an||

λn
≤ −l .

Thus
∑∞

n=1 anen ∈ X. Therefore fα → f ∈ X. Hence X is complete. This
proves Theorem 2.1.

Theorem 2.2. A necessary and sufficient condition for the linear trans-
formation F : X → X with F (en) = αn ∈ X, n = 1, 2, ..., to be continuous is
that for each σ < l

lim
n→∞

sup
log ||αn||σ

λn

< l . (2.4)

Proof. Let F be a continuous linear transformation from X into X with
F (en) = αn, n = 1, 2, .... Then for any given σ, there exists a σ1 (σ, σ1 < l)
and a finite constant K such that

||F (en) ||σ ≤ K||en||σ1

⇒ ||αn|| ≤ Keσ1 λn n ≥ 1

⇒ lim
n→∞

sup
log ||αn||σ

λn
≤ σ1 < l .

Conversely, let the sequence {αn} satisfy (2.4) and let α(s) =
∑∞

n=1 anen ∈
X. Then there exists an ε > 0 such that

log ||αn||σ
λn

≤ l − ε for all n ≥ n1(ε).

Further, for a given η > 0 such that η < ε,

||an|| ≤ e(−l+η) λn for all n ≥ n2(η) .
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Hence

||an||.||αn||σ ≤ e(−l+η) λne(l−ε) λn for all n ≥ max(n1, n2)

= e(η−ε) λn .

Hence the series
∑∞

n=1 ||an|| ||αn||σ is convergent. As σ < l , therefore
∑∞

n=1 anαn is convergent in X. Hence there exists a linear transformation
F : X → X such that F (α) =

∑∞
n=1 anαn and F (en) = αn, n = 1, 2..., for

each αn ∈ X. Now we prove the continuity of F. Given σ < l, there exists η > 0
such that

log ||αn||σ
λn

≤ l − η, for all n ≥ N

⇒ ||αn||σ ≤ e(l−η) λn , for all n ≥ N

⇒ ||αn||σ ≤ Ke(l−η) λn , for all n ≥ 1.

Now,

||F (α) || ≤ K

∞
∑

n=1

||an||e
(l−η) λn = K||α||l−η .

Hence F : {X, ||..., σ} → {X, ||..., l − η} is continuous. Since σ < l is
arbitrary, it shows that F is continuous. This proves Theorem 2.2.

We now give the characterization of proper bases. First we prove

Lemma 2.1. Let {an} ⊆ E and {αn} ⊂ X be given sequences. The
following three conditions are equivalent:

(i) Convergence of
∑∞

n=1 anen in X implies the convergence of
∑∞

n=1 an αn

in X.

(ii) The convergence of
∑∞

n=1 anen in X implies that lim
n→∞

an αn = 0 in X.

(iii) lim
n→∞

sup log ||αn||σ
λn

< l , for all σ < l.

Proof. First suppose that (i) holds. Then for any sequence {an}, where a
,
ns

belong to Banach algebra E,
∑∞

n=1 anen converges in X implies that
∑∞

n=1 an αn

converges in X which in turn implies that anαn → 0 as n → ∞. Hence (i)⇒(ii).
Now we assume that (ii) is true but (iii) is false. This implies that for some
σ1 < l,

lim
n→∞

sup
log ||αn||σ1

λn
≥ l .

Hence there exists a sequence {nk} of positive integers, such that

lim
k→∞

sup
log ||αnk

||σ1

λnk

≥ l − k−1 , ∀nk , k = 1, 2, ... .
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We define a sequence {an} ⊆ E, as

an =

{

ωe−(l−k−1)λnk n = nk , for k = 1, 2, 3...
0 n 6= nk .

Then, we have

||ank
||.eσλn

k = e−(l−k−1)λn
k eσ.λn

k = e−(l−σ−k−1)λn
k .

For large k, (l−σ−k−1) > 0. Hence
∑∞

k=1 ||ank
||.eσ.λn

k converges in X for
all σ < l.

On the other hand, for all k = 1, 2, 3...,

||ank
||. ||αnk

||σ1
≥ e−(l−k−1)λn

k .e(l−k−1)λn
k = 1.

Therefore the sequence {an αn} does not tend to zero as n → ∞ and this
contradicts (ii). Hence (ii) ⇒(iii). Lastly we show that (iii) ⇒(i).

In course of the proof of Theorem 2.2 above, we have already proved that
if (iii) holds then there exists a linear continuous transformation F : X → X

with F (en) = αn ∈ X, n = 1, 2.... By continuity of F,

F (

∞
∑

n=1

anen) = F ( lim
n→∞

n
∑

k=1

akek)

= lim
n→∞

{

n
∑

k=1

akF (ek)}=

∞
∑

n=1

an αn.

Thus the proof of Lemma 2.1 is complete.

Lemma 2.2. Let {an} ⊆ E and {αn} ⊆ X. The following three proper-
ties are equivalent:

(a) lim
n→∞

(anαn) = 0 in X implies that
∑∞

n=1 anen converges in X.

(b) Convergence of
∑∞

n=1(anαn) in X implies that
∑∞

n=1 anen converges in
X.

(c) lim
σ→l

{

lim
n→∞

inf log ||αn||σ
λn

}

≥ l .

Proof. Obviously (a) ⇒ (b). We now prove that (b) ⇒ (c). To prove this,
we suppose that (b) holds but (c) does not hold. Therefore

lim
σ→l

{

lim
n→∞

inf
log ||αn||σ

λn

}

< l.
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Since ||...||σ increases as σ increases, this implies that for each σ < l ,

lim
n→∞

inf
log ||αn||σ

λn

< l , for all σ < l .

Hence if η > 0 is a fixed small positive number, then for each r > 0, we can
find a positive number nr such that ∀r, we have nr+1 > nr and

log ||αnr
||σ

λnr

< l − η

⇒ ||αnr
||σ ≤ e(l−η)λnr .

(2.5)

Now we choose a positive number η1 < η, and define a sequence {an} ⊆ E

as

an =

{

ωe−(l−η1)λnr n = nr , for r = 1, 2, 3...
0 n 6= nr.

Then, for any σ < l

∞
∑

n=1

||an||.||αn||σ =
∞

∑

r=1

||anr
||.||αnr

||σ. (2.6)

Omit from the above series those finite number of terms, which correspond
to those number nr for which 1/r > η1. The remainder of the series in (2.6) is
dominated by

∑∞
r=1 ||anr

||.||αnr
||σ. Now by (2.5) and (2.6), we find that

∞
∑

n=1

||an||.||αn||σ ≤
∞
∑

r=1

||anr
||.||αnr

||σ≤
∞
∑

r=1

e(l−η)λnr .e−(l−η1)λnr =
∞
∑

r=1

e(η1−η)λnr .

Since η1 < η, above series is convergent. For this sequence {an} as defined
above,

∑∞
n=1 ||an||αn converges in X (σ) for each σ < l and hence converges in

X. But we have,

∞
∑

n=1

||an||. e
σ.λn =

∞
∑

r=1

||anr
|| .eσ.λnr =

∞
∑

r=1

e−(l−η1)λnr .eσ.λnr =

∞
∑

r=1

e(σ+η1−l)λnr .

Now given η1 choose σ < l such that σ + η1 > l, then the above series is
divergent for this σ. Hence

∑∞
n=1 anen does not converge in X and this is a

contradiction. Therefore (b) ⇒ (c).
Now we prove that (c) ⇒ (a). We assume (c) is true but (a) does not hold.

Then there exists a sequences {an} , where a
,
ns belongs to Banach space E, for
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which ||an||αn → 0 in X, but
∑∞

n=1 anen does not converge in X.This implies
that

lim
n→∞

sup
log ||an||

λn
> −l.

Hence there exists a positive number ε and a sequence {nk} of positive integers
such that

log ||ank
||

λnk

≥ e(l−ε)λn
k . (2.7)

We choose a positive number η such that η < ε/2, by assumption we can
find a positive number σ = σ (η) such that

lim
n→∞

inf
log ||αn||σ
λn log λn

≥ l − η .

Hence there exists N = N (η), such that

log ||αn||σ
λn

≥ l − 2η , ∀n ≥ N. (2.8)

Therefore,

||ank
||.||αnk

||σ ≥ e(−l+ε)λnk .e(l−2η)λnk ,

= e(ε−2η)λn
k → ∞ as k → ∞ , since ε > 2η.

Thus {||an|| αn} does not tend to zero in X(σ) for the σ chosen above and
this is a contradiction. Thus (c) ⇒ (a) is proved. This completes the proof of
Lemma 2.2.

Now combining Lemma 2.1 and Lemma 2.2 above, we get the following

Theorem 2.3. A base {αn} in a closed subspace X0 of X is proper if and
only if it satisfies the conditions (iii) and (c).
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