International Journal of Pure and Applied Mathematics

Volume 72 No. 1 2011, 19-26

THE OPTIMAL GENERALIZED HERONIAN MEAN BOUNDS FOR THE IDENTRIC MEAN

Yefang Qiu¹, Miaokun Wang², Yuming Chu² §

¹Department of Mathematics
Zhejiang Sci-Tech University
Zhejiang, Hangzhou, 310018, P.R. CHINA

²Department of Mathematics
Huzhou Teachers College
Zhejiang, Huzhou, 313000, P.R. CHINA

Abstract: In this paper, we answer the question: What are the greatest value p and the least value q, such that the double inequality $H_p(a,b) < I(a,b) < H_q(a,b)$ holds for all a,b>0 with $a \neq b$? Here, $H_p(a,b)$ and I(a,b) denote the p-th generalized Heronian mean and identric mean of two positive numbers a and b, respectively.

AMS Subject Classification: 26E60

Key Words: generalized Heron mean, identric mean, logarithmic mean, power mean

1. Introduction

For $p \in \mathbb{R}$, the p-th generalized Heronian mean of two positive numbers a and b was defined by Jia and Cao [1] as follows:

$$H_p(a,b) = \begin{cases} \left(\frac{a^p + (ab)^{\frac{p}{2}} + b^p}{3}\right)^{\frac{1}{p}}, & p \neq 0, \\ \sqrt{ab}, & p = 0. \end{cases}$$
 (1)

Received: April 9, 2010

© 2011 Academic Publications, Ltd.

[§]Correspondence author

It is well-known that $H_p(a,b)$ is strictly increasing with respect to p for fixed a,b>0 with $a\neq b$. For $r\in\mathbb{R}$, let $M_r(a,b)=\left\{\begin{array}{ll} (\frac{a^r+b^r}{2})^{\frac{1}{r}}, & r\neq 0,\\ \sqrt{ab}, & r=0, \end{array}\right.$ $A(a,b)=\frac{a+b}{2},\ G(a,b)=\sqrt{ab},\ H(a,b)=\frac{2ab}{a+b},\ I(a,b)=\left\{\begin{array}{ll} \frac{1}{e}(\frac{b^b}{a^a})^{\frac{1}{b-a}}, & b\neq a,\\ a, & b=a \end{array}\right.$

and $L(a,b) = \begin{cases} \frac{b-a}{\log b - \log a}, & b \neq a, \\ a, & b = a \end{cases}$ be the r-th power, arithmetic, geometric, harmonic, identric and logarithmic means of two positive numbers a and b. Then

$$\min\{a,b\} < H(a,b) < G(a,b) = M_0(a,b) = H_0(a,b) < L(a,b) < I(a,b) < A(a,b) = M_1(a,b) < \max\{a,b\}$$
 (2)

for all a, b > 0 with $a \neq b$.

In [2], Alzer and Janous established the following sharp double inequality (see also [3, p 350]):

$$M_{\frac{\log 2}{\log 3}}(a,b) < H_1(a,b) = \frac{2}{3}A(a,b) + \frac{1}{3}G(a,b) < M_{\frac{2}{3}}(a,b)$$

for all a, b > 0 with $a \neq b$.

The following sharp upper generalized Heronian mean bound for the logarithmic mean was given in [1]:

$$L(a,b) < H_{\frac{1}{2}}(a,b)$$

for all a, b > 0 with $a \neq b$.

The following comparison for generalized Heronian mean and identric mean is due to Sándor [4, 5]:

$$H_1(a,b) = \frac{2}{3}A(a,b) + \frac{1}{3}G(a,b) < I(a,b)$$
(3)

for all a, b > 0 with $a \neq b$.

In [6-8] the authors presented the sharp power mean bounds for the combinations of G and H, G and L, and A and L.

$$\begin{split} &\frac{2}{3}G(a,b) + \frac{1}{3}H(a,b) > M_{-\frac{1}{3}}(a,b), \\ &\frac{1}{3}G(a,b) + \frac{2}{3}H(a,b) > M_{-\frac{2}{3}}(a,b), \\ &A^{\alpha}(a,b)L^{1-\alpha}(a,b) < M_{\frac{1+2\alpha}{3}}(a,b), \end{split}$$

$$G^{\alpha}(a,b)L^{1-\alpha}(a,b) < M_{\frac{1-\alpha}{3}}(a,b)$$

and

$$M_{\frac{\log 2}{\log 2 - \log \alpha}}(a, b) < \alpha A(a, b) + (1 - \alpha)L(a, b) < M_{\frac{1+2\alpha}{3}}(a, b)$$

for all $\alpha \in (0,1)$ and a, b > 0 with $a \neq b$.

The purpose of this paper is to answer the question: What are the greatest value p and the least value q, such that the double inequality $H_p(a,b) < I(a,b) < H_q(a,b)$ holds for all a,b>0 with $a \neq b$? Our main result is the following Theorem 1.

Theorem 1. For all a, b > 0 with $a \neq b$ we have

$$H_1(a,b) < I(a,b) < H_{\log 3}(a,b),$$

and $H_{\log 3}(a, b)$ and $H_1(a, b)$ are the best possible upper and lower generalized Heronian mean bounds for the identric mean I(a, b).

2. One Lemma

In order to prove our main result, we need a lemma which we present in this section.

Lemma 1. Suppose that $g(x) = 4x^{4p} - 4x^{4p-2} + (p-2)x^{3p+2} - 2(p-4)x^{3p} + (p-6)x^{3p-2} + 2(2p-3)x^{2p+2} - 4(2p-3)x^{2p} + 2(2p-3)x^{2p-2} + (p-6)x^{p+2} - 2(p-4)x^p + (p-2)x^{p-2} - 4x^2 + 4$. If $p = \log 3 = 1.0986 \cdots$, then there exists a unique $x_0 \in (1, +\infty)$ such that g(x) > 0 for $x \in (1, x_0)$, g(x) < 0 for $x \in (x_0, +\infty)$ and $g(x_0) = 0$.

Proof. Let $g_1(x) = \frac{g'(x)}{x}$, $g_2(x) = x^{5-p}g'_1(x)$, $g_3(x) = \frac{g'_2(x)}{2px}$, $g_4(x) = \frac{g'_3(x)}{2x}$, $g_5(x) = \frac{1}{2}x^{5-p}g'_4(x)$, and $g_6(x) = \frac{g'_5(x)}{px}$. Then simple computations lead to

$$g(1) = 0, (4)$$

$$\lim_{x \to +\infty} g(x) = -\infty,\tag{5}$$

$$g_1(x) = 16px^{4p-2} - 8(2p-1)x^{4p-4} + (p-2)(3p+2)x^{3p} - 6p(p-4)x^{3p-2} + (p-6)(3p-2)x^{3p-4} + 4(p+1)(2p-3)x^{2p} - 8p(2p-3)x^{2p-2} + 4(p-1)(2p-3)x^{2p-4} + (p-6)(p+2)x^p - 2p(p-4)x^{p-2}$$

$$+(p-2)^2x^{p-4}-8,$$

$$q_1(1) = 0,$$
 (6)

$$\lim_{x \to +\infty} g_1(x) = -\infty,\tag{7}$$

$$g_{2}(x) = 32p(2p-1)x^{3p+2} - 32(p-1)(2p-1)x^{3p} + 3p(p-2)(3p+2) \times x^{2p+4} - 6p(p-4)(3p-2)x^{2p+2} + (p-6)(3p-2)(3p-4)x^{2p} +8p(p+1)(2p-3)x^{p+4} - 16p(p-1)(2p-3)x^{p+2} + 8(p-1) \times (p-2)(2p-3)x^{p} + p(p-6)(p+2)x^{4} - 2p(p-2)(p-4)x^{2} +(p-2)^{2}(p-4),$$

$$g_2(1) = 144(p-1) > 0,$$
 (8)

$$\lim_{x \to +\infty} g_2(x) = -\infty,\tag{9}$$

$$g_3(x) = 16(2p-1)(3p+2)x^{3p} - 48(p-1)(2p-1)x^{3p-2} + 3(p-2)(p+2)$$

$$\times (3p+2)x^{2p+2} - 6(p-4)(p+1)(3p-2)x^{2p} + (p-6)(3p-2)$$

$$\times (3p-4)^{2p-2} + 4(p+1)(p+4)(2p-3)x^{p+2} - 8(p-1)(p+2)$$

$$\times (2p-3)x^p + 4(p-1)(p-2)(2p-3)x^{p-2} + 2(p-6)(p+2)x^2$$

$$-2(p-2)(p-4).$$

$$q_3(1) = 360(p-1) > 0,$$
 (10)

$$\lim_{x \to +\infty} g_3(x) = -\infty,\tag{11}$$

$$g_4(x) = 24p(2p-1)(3p+2)x^{3p-2} - 24(p-1)(2p-1)(3p-2)x^{3p-4} + 3$$

$$\times (p-2)(p+1)(p+2)(3p+2)x^{2p} - 6p(p-4)(p+1)(3p-2)x^{2p-2}$$

$$+(p-1)(p-6)(3p-2)(3p-4)x^{2p-4} + 2(p+1)(p+2)(p+4)$$

$$\times (2p-3)x^p - 4p(p-1)(p+2)(2p-3)x^{p-2} + 2(p-1)(p-2)^2$$

$$\times (2p-3)x^{p-4} + 2(p-6)(p+2),$$

$$g_4(1) = 636p^2 - 684p + 24 = 40.168 \dots > 0,$$
 (12)

$$\lim_{x \to +\infty} g_4(x) = -\infty,\tag{13}$$

$$g_5(x) = 12p(2p-1)(3p-2)(3p+2)x^{2p+2} - 12(p-1)(2p-1)(3p-2)$$

$$\times (3p-4)x^{2p} + 3p(p-2)(p+1)(p+2)(3p+2)x^{p+4} - 6p(p-4)$$

$$\times (p-1)(p+1)(3p-2)x^{p+2} + (p-1)(p-2)(p-6)(3p-2)$$

$$\times (3p-4)x^{p} + p(p+1)(p+2)(p+4)(2p-3)x^{4} - 2p(p-1)$$

$$\times (p-2)(p+2)(2p-3)x^{2} + (p-1)(p-2)^{2}(p-4)(2p-3),$$

$$g_{5}(1) = 1038p^{3} - 1950p^{2} + 1092p - 240 = -17.510 \dots < 0$$
(14)

and

$$g_{6}(x) = 24(p+1)(2p-1)(3p-2)(3p+2)x^{2p} + 24(p-1)(2p-1) \\ \times (3p-2)(4-3p)x^{2p-2} - 3(2-p)(p+1)(p+2)(p+4) \\ \times (3p+2)x^{p+2} + 6(p-1)(4-p)(p+1)(p+2)(3p-2)x^{p} \\ -(p-1)(2-p)(6-p)(3p-2)(4-3p)x^{p-2} - 4(p+1) \\ \times (p+2)(p+4)(3-2p)x^{2} - 4(p-1)(2-p)(p+2) \\ \times (3-2p) \\ < 24(p+1)(2p-1)(3p-2)(3p+2)x^{p+2} + 24(p-1)(2p-1) \\ \times (3p-2)(4-3p)x^{p+2} - 3(2-p)(p+1)(p+2)(p+4) \\ \times (3p+2)x^{p+2} + 6(p-1)(4-p)(p+1)(p+2)(3p-2)x^{p+2} \\ = (-9p^{5} + 99p^{4} + 1896p^{3} - 2628p^{2} + 528p - 96)x^{p+2} \\ = (-43.944 \cdots)x^{p+2} < 0$$

for x > 1.

From inequalities (14) and (15) we clearly see that $g_5(x) < 0$ for $x \in [1, +\infty)$, hence $g_4(x)$ is strictly decreasing in $[1, +\infty)$.

Form (12) and (13) together with the monotonicity of $g_4(x)$ we know that there exists $\lambda_1 \in (1, +\infty)$, such that $g_4(x) > 0$ for $x \in [1, \lambda_1)$ and $g_4(x) < 0$ for $x \in (\lambda_1, +\infty)$. Hence $g_3(x)$ is strictly increasing in $[1, \lambda_1]$ and strictly decreasing in $[\lambda_1, +\infty)$.

The monotonicity of $g_3(x)$ together with (10) and (11) imply that there exists $\lambda_2 \in (1, +\infty)$, such that $g_3(x) > 0$ for $x \in [1, \lambda_2)$ and $g_3(x) < 0$ for $x \in (\lambda_2, +\infty)$. Hence $g_2(x)$ is strictly increasing in $[1, \lambda_2]$ and strictly decreasing in $[\lambda_2, +\infty)$.

From (8) and (9) together with the monotonicity of $g_2(x)$ we clearly see that there exists $\lambda_3 \in (1, +\infty)$, such that $g_2(x) > 0$ for $x \in [1, \lambda_3)$ and $g_2(x) < 0$ for $x \in (\lambda_3, +\infty)$. Hence $g_1(x)$ is strictly increasing in $[1, \lambda_3]$ and strictly decreasing in $[\lambda_3, +\infty)$.

The monotonicity of $g_1(x)$ together with (6) and (7) lead to that there exists $\lambda_4 \in (1, +\infty)$, such that $g_1(x) > 0$ for $x \in (1, \lambda_4)$ and $g_1(x) < 0$ for $x \in (\lambda_4, +\infty)$. Hence g(x) is strictly increasing in $[1, \lambda_4]$ and strictly decreasing in $[\lambda_4, +\infty)$.

Therefore, Lemma 1 follows from (4) and (5) together with the monotonicity of g(x).

3. Proof of Theorem 1

From (3) we clearly see that $H_1(a,b) < I(a,b)$ for all a,b>0 with $a \neq b$. Next, we prove that

$$I(a,b) < H_{\log 3}(a,b) \tag{16}$$

for all a, b > 0 with $a \neq b$.

Without loss of generality, we assume that a>b, and put $x=\sqrt{\frac{a}{b}}>1$ and $p=\log 3.$ Then

$$\log[H_p(a,b)] - \log[I(a,b)] = \frac{1}{p}\log(1+x^p+x^{2p}) - \frac{2x^2}{x^2-1}\log x.$$
(17)

Let

$$f(x) = \frac{1}{p}\log(1+x^p+x^{2p}) - \frac{2x^2}{x^2-1}\log x.$$
 (18)

Then simple computations lead to

$$\lim_{x \to 1} f(x) = \lim_{x \to +\infty} f(x) = 0, \tag{19}$$

$$f'(x) = \frac{4x}{(x^2 - 1)^2} f_1(x), \tag{20}$$

where $f_1(x) = \log x - \frac{(x^2-1)(2x^{2p-2}+x^p+x^{p-2}+2)}{4(1+x^p+x^{2p})}$, and

$$f_1(1) = 0, (21)$$

$$\lim_{x \to +\infty} f_1(x) = -\infty, \tag{22}$$

$$f_1'(x) = \frac{g(x)}{4x(1+x^p+x^{2p})^2},$$
(23)

where g(x) is defined as in Lemma 1.

From (23) and Lemma 1 we clearly see that there exists $x_0 \in (1, +\infty)$ such that $f_1(x)$ is strictly increasing in $[1, x_0]$ and strictly decreasing in $[x_0, +\infty)$. Then (21) and (22) together with the monotonicity of $f_1(x)$ imply that there exists $\lambda \in (1, +\infty)$ such that $f_1(x) > 0$ for $x \in (1, \lambda)$ and $f_1(x) < 0$ for $x \in (\lambda, +\infty)$, this result and (20) lead to that f(x) is strictly increasing in $[1, \lambda]$ and strictly decreasing in $[1, \lambda]$.

Therefore, inequality (16) follows from (17)-(19) and the monotonicity of f(x).

At last, we prove that $H_{\log 3}(a, b)$ and $H_1(a, b)$ are the best possible upper and lower generalized Heronian mean bounds for the identric mean I(a, b).

For, any $0 < \varepsilon < \log 3$ and x > 0 one has

$$\lim_{x \to +\infty} \frac{H_{\log 3 - \varepsilon}(1, x)}{I(1, x)} = e \lim_{x \to +\infty} \frac{\left[\frac{1}{3}(1 + x^{\frac{\varepsilon - \log 3}{2}} + x^{\varepsilon - \log 3})\right]^{\frac{1}{\log 3 - \varepsilon}}}{x^{\frac{1}{x - 1}}}$$

$$= \frac{e}{3^{\frac{1}{\log 3 - \varepsilon}}} < \frac{e}{3^{\frac{1}{\log 3}}} = 1,$$
(24)

$$H_{1+\varepsilon}(1+x,1) - I(1+x,1)$$

$$= \left[\frac{1+(1+x)^{\frac{1+\varepsilon}{2}} + (1+x)^{1+\varepsilon}}{3}\right]^{\frac{1}{1+\varepsilon}} - \frac{1}{e}(1+x)^{\frac{1+x}{x}}.$$
(25)

Let $x \to 0$, making use of the Taylor expansion we get

$$\left[\frac{1+(1+x)^{\frac{1+\varepsilon}{2}}+(1+x)^{1+\varepsilon}}{3}\right]^{\frac{1}{1+\varepsilon}} - \frac{1}{e}(1+x)^{\frac{1+x}{x}}$$

$$= \frac{\varepsilon}{12}x^2 + o(x^2).$$
(26)

Inequality (24) implies that for any $0 < \varepsilon < \log 3$ there exists $X = X(\varepsilon) > 1$ such that $I(1,x) > H_{\log 3-\varepsilon}(1,x)$ for $x \in (X,+\infty)$.

Equations (25) and (26) imply that for any $0 < \varepsilon < \log 3$ there exists $\delta = \delta(\varepsilon) > 0$ such that $H_{1+\varepsilon}(1+x,1) > I(1+x,1)$ for $x \in (0,\delta)$.

Acknowledgments

This research is partially supported by N S Foundation of China (Grant 60850005), N S Foundation of Zhejiang Province (Grants D7080080 and Y607128) and Innovation Team Foundation of the Department of Education of Zhejiang Province (Grant T200924).

References

- [1] G. Jia, J.-D. Cao, A new upper bound of the logarithmic mean, *J. Inequal. Pure Appl. Math.*, **4**, No. 4 (2003), Article 80, 4 pages.
- [2] H. Alzer, W. Janous, Solution of problem 8*, Crux. Math., 13 (1987), 173-178.
- [3] P.S. Bullen, D.S. Mitrinović, P.M. Vasić, *Means and their Ineualities*, D. Reidel Publishing Co., Dordrecht (1988).

- [4] J. Sándor, A note on some inequalities for means, Arch. Math., Basel, 56, No. 5 (1991), 471-473.
- [5] J. Sándor, On certain identities for means, Studia Univ. Babes-Bolyai Math., 38, No. 4 (1993), 7-14.
- [6] Y.-M. Chu, W.-F. Xia, Two sharp inequalities for power mean, geometric mean, and harmonic mean, J. Inequal. Appl. (2009), Article ID 741923, 6 pages.
- [7] M.-Y. Shi, Y.-M. Chu, Y.-P. Jiang, Optimal inequalities among various means of two arguments, *Abstr. Appl. Anal.* (2009), Article ID **694394**, 10 pages.
- [8] W.-F. Xia, Y.-M. Chu, G.-D. Wang, The optimal upper and lower power mean bounds for a convex combination of the arithmetic and logarithmic means, *Abstr. Appl. Anal.* (2010), Article ID **604804**, 10 pages.