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Abstract: In this paper, we answer the question: What are the greatest value
p and the least value ¢, such that the double inequality Hp(a,b) < I(a,b) <
H,(a,b) holds for all a,b > 0 with a # b? Here, H,(a,b) and I(a,b) denote the
p-th generalized Heronian mean and identric mean of two positive numbers a
and b, respectively.
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1. Introduction

For p € R, the p-th generalized Heronian mean of two positive numbers a and
b was defined by Jia and Cao [1] as follows:

ap-i—(ab)%-i-bp 1
Hy(a,b) = U757 p 70, &)
\/%, p=0.
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It is well-known that Hp(a,b) is strictly increasing with respect to p for

fixed a,b > 0 with a # b. For r € R, let M,(a,b) = (af-;b")%’ r#0,

' ’ ’ e v ab, r =20,
IR

A(a,b) = %2, G(a,b) = vab, H(a,b) = 22 I(a,b) = { elaa)t= Z?’éa»

a, =a

and L(a,b) = { logb—loga’ b 7 @ be the r-th power, arithmetic, geometric,
a, =a

harmonic, identric and logarithmic means of two positive numbers a and b.

Then
min{a,b} < H(a,b) < G(a,b) = My(a,b) = Ho(a,b) @)
< L(a,b) < I(a,b) < A(a,b) = M;(a,b) < max{a,b}

for all a,b > 0 with a # b.
In [2], Alzer and Janous established the following sharp double inequality
(see also [3, p 350]):

2 1
Miog2 (a,b) < Hy(a,b) = gA(a, b) + gG(a, b) < Mg(a, b)

log 3

for all a,b > 0 with a # b.
The following sharp upper generalized Heronian mean bound for the loga-
rithmic mean was given in [1]:

L(a,b) < Hi(a,b)

1
2

for all a,b > 0 with a # b.
The following comparison for generalized Heronian mean and identric mean
is due to Sandor [4, 5]:

Hi(a,b) = ;A(a, b) + %G(a, b) < I(a,b) 3)

for all a,b > 0 with a # b.
In [6-8] the authors presented the sharp power mean bounds for the combi-
nations of G and H, G and L, and A and L.

2 1
gG(a, b) + gH(a, b) > M_%(a, b),

2
3

éG(a, b+ ;H(a, b) > M_s(a,b),

A%(a,b) L' (a,b) < M 120 (a, b),
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G“(a,b)L'~*(a,b) < leTa (a,b)

and

M 12 (a,b) < aA(a,b) + (1 — a)L(a,b) < M%(a, b)

Tog2-log a
for all @ € (0,1) and a,b > 0 with a # b.

The purpose of this paper is to answer the question: What are the great-
est value p and the least value ¢, such that the double inequality Hp(a,b) <
I(a,b) < Hy(a,b) holds for all a,b > 0 with a # b? Our main result is the
following Theorem 1.

Theorem 1. For all a,b > 0 with a # b we have
Hy(a,b) < I(a,b) < Higgs(a,b),

and Hyog3(a,b) and H(a,b) are the best possible upper and lower generalized
Heronian mean bounds for the identric mean I(a,b).

2. One Lemma

In order to prove our main result, we need a lemma which we present in this
section.

Lemma 1. Suppose that g(z) = 4% — 42%=2 4 (p — 2)23P+2 — 2(p —
)z + (p — 6)zP~2 + 2(2p — 3)x?P*2 — 4(2p — 3)a? + 2(2p — 3)x?P 2 + (p —
6)xP2 — 2(p — 4)zP + (p — 2)aP~2 —42® + 4. If p = log3 = 1.0986- - -, then
there exists a unique xg € (1,+00) such that g(z) > 0 for x € (1, ), g(z) <0
for x € (z9,+00) and g(xg) = 0.

Proof. Let gi(z) = 2, gy(z) = 257Pg) (), gs(z) = B2, gy(x) = 42,

T

g5(x) = 3257 Pg)(z), and ge(z) = g*/’;)(::). Then simple computations lead to
g9(1) =0, (4)
Jm g(z) = —oo, (5)
gi(z) = 16pz™™? —8(2p — 2" + (p — 2)(3p + 2)a — 6p(p — 4)2

+(p—6)(3p — 2)z*" " +4(p+ 1)(2p — 3)a™ — 8p(2p — 3)2*" >
+A(p—1)(2p — 3)a* " + (p — 6)(p + 2)a” — 2p(p — 4)aP >
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+(p - 2)21'17_4 - 8>

gl(l) = Oa (6)
:cll}}-loo g1(z) = —00, (7)
g2(z) = 32p(2p — 1)a**? —32(p — 1)(2p — 1)2*” + 3p(p — 2)(3p + 2)

xz?Pt — 6p(p — 4)(3p — 2)z* " + (p — 6)(3p — 2)(3p — 4)z™
+8p(p + 1)(2p — 3)aPT* — 16p(p — 1)(2p — 3)a?*> +8(p — 1)
x(p—2)(2p — 3)xP + p(p — 6)(p + 2)2* — 2p(p — 2)(p — 4)2*
+(p—2)(p — 4),

92(1) = 144(p — 1) > 0, (8)
13, 92(@) = oo, )
gs(z) = 16(2p — 1)(3p +2)a®” —48(p — 1)(2p — 1)2* % + 3(p — 2)(p + 2)

X (3p+2)a* ™ —6(p — 4)(p +1)(3p — 2)2* + (p — 6)(3p — 2)
X(3p — 472+ 4lp+1)(p+4)(2p - 3)a"* —8(p — 1)(p +2)
x(2p —3)aP +4(p —1)(p — 2)(2p — 3)aP 2+ 2(p — 6)(p + 2)2°
)

—2(p—2)(p — 4),
g3(1) = 360(p — 1) > 0, (10)
Jm gs(x) = —oo, (11)
ga(x) = 24p(2p —1)(3p+2)a*" > —24(p — 1)(2p — 1)(3p — 2)z** + 3
x(p—2)(p+1)(p+2)(Bp+2)z* — 6p(p — 4)(p + 1)(3p — 2)2* >
+p-1)(p— )(3p —2)(Bp -4z +2(p+ 1)(p+2)(p+ 4)
x(2p — 3)a? —4p(p — 1)(p +2)(2p — 3)2" > +2(p — 1) (p — 2)*
x(2p — 3)a?~* 4+ 2(p — 6)(p + 2),
g1(1) = 636p% — 684p + 24 = 40.168 - > 0, (12)
Jim ga(x) = —oo, (13)

gs(z) = 12p(2p —1)(3p — 2)(3p + 2)z™ > — 12(p — 1)(2p — 1)(3p — 2)
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3p —4)x
p—1)
3p—4
p—2)

 +3p(p—2)(p+ 1)(p + 2)(3p + 2)2P T — 6p(p — 4)
p+1)(Bp—2)2" + (p—1)(p—2)(p— 6)(3p — 2)
2’ +plp+1D(p+2)(p+4)(2p — 3)z* — 2p(p — 1)
pP+2)(2p—3)z +(p—1)(p—2)*(p — 4)(2p — 3),

g5(1) = 1038p® — 1950p? + 1092p — 240 = —17.510--- < 0 (14)

\_//—\\_/

X X X X

(
(
(
(

—

and

ge(x) = 24(p+1)(2p —1)(3p — 2)(3p + 2)a* +24(p — 1)(2p — 1)
X(3p —2)(4 = 3p)a** =32 —p)(p+ 1)(p+2)(p +4)
X (3p+2)aP*t? +6(p — 1)(4 —p)(p+1)(p + 2)(3p — 2)a?
—(p—1)(2—p)(6 —p)(Bp —2)(4 — 3p)aP 2 —4(p+1)
Ep + 2)()1j +4)(3—-2p)z® —4(p—-1)(2—p)(p+2)
< 24(p+1)(2p —1)(3p — 2)(3p + 2)aP T2 + 24(p — 1)(2p — 1)
X(3p —2)(4 — 3p)aP*? =32 —p)(p+ 1)(p+2)(p +4)
X (3p 4+ 2)2PT2 + 6(p — 1)(4 — p)(p+ 1)(p + 2)(3p — 2)aP*?
= (—9p° + 99p* + 1896p3 — 2628p? + 528p — 96)xP+2
= (—43.944---)2PT2 <0

(15)

for x > 1.

From inequalities (14) and (15) we clearly see that gs(z) < 0 for x €
[1,4+00), hence g4(x) is strictly decreasing in [1,400).

Form (12) and (13) together with the monotonicity of g4(z) we know that
there exists A1 € (1,+00), such that g4(x) > 0 for x € [1,\;) and g4(x) < 0 for
x € (A1, +00). Hence g3(x) is strictly increasing in [1, A{] and strictly decreasing
in [)\1, +OO).

The monotonicity of gs(z) together with (10) and (11) imply that there
exists A2 € (1,+00), such that gs(x) > 0 for x € [1,\s) and g3(xz) < 0 for
x € (A, +00). Hence go(z) is strictly increasing in [1, \2] and strictly decreasing
n [)\2, +OO)

From (8) and (9) together with the monotonicity of g2(z) we clearly see that
there exists A3 € (1,+00), such that ga(x) > 0 for x € [1, A\3) and ga2(x) < 0 for
x € (A\3,+00). Hence gy () is strictly increasing in [1, A3] and strictly decreasing
in [A3, +00).

The monotonicity of g;(z) together with (6) and (7) lead to that there
exists Ay € (1,400), such that gi(z) > 0 for z € (1,\4) and gi(x) < 0 for
x € (A\yg, +00). Hence g(z) is strictly increasing in [1, A4] and strictly decreasing
n [)\4, +OO)
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Therefore, Lemma 1 follows from (4) and (5) together with the monotonicity
of g(z).

3. Proof of Theorem 1

From (3) we clearly see that Hy(a,b) < I(a,b) for all a,b > 0 with a # b.
Next, we prove that
I(avb) < Hlog3(a7b) (16)

for all a,b > 0 with a # b.
Without loss of generality, we assume that ¢ > b, and put x = \/% > 1 and

p =log 3. Then
log[Hp(av b)] - log[I(av b)]

= Llog(1+aP + a?) — 2% Jog . (17)
Let . 02
f(x) = ;log(l + 2P + 2%P) — :C;?_ . log . (18)
Then simple computations lead to

lim f(x) = lim_f(x) =0, (19)
F'@) = Zrgh(@), (20)

where fu(e) = logs — EUERET g
(1) =0, (21)
imfie) = —oo, (22)
JHE 2 (23)

4z (1 + xP + 22r)2’

where g(x) is defined as in Lemma 1.

From (23) and Lemma 1 we clearly see that there exists z¢ € (1, +00) such
that f1(z) is strictly increasing in [1,xg] and strictly decreasing in [xg, +00).
Then (21) and (22) together with the monotonicity of fi(x) imply that there
exists A € (1,400) such that fi(z) > 0 for z € (1,\) and fi(z) < O for
x € (A, +00), this result and (20) lead to that f(x) is strictly increasing in
(1, A] and strictly decreasing in [\, +00).
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Therefore, inequality (16) follows from (17)-(19) and the monotonicity of
().

At last, we prove that Hiog3(a,b) and Hi(a,b) are the best possible upper
and lower generalized Heronian mean bounds for the identric mean I(a,b).

For, any 0 < € < log3 and x > 0 one has

e—log3 1
s H10g378(17x) _ : [%(1-"—%‘ 2 +x8710g3)]10g375
L e e im oIt (24)
— —el_ < el et 1’
SW 3log3
Hipe(1+2,1) = I(1+a,1) (25)
Lfe 1+e__1 x
[1+(1+:v) 23+(1+r) ]1+€ _ %(1 + x) 11 )
Let x — 0, making use of the Taylor expansion we get
1+e
L+ (14a) 27 (1) +ey o itz
[ (1+=) (14x) |TH — %(1 +x) = (26)

3
= Sa?+o(z?).
Inequality (24) implies that for any 0 < ¢ < log 3 there exists X = X(g) > 1
such that I(1,z) > Hypg3--(1,2) for € (X, +00).
Equations (25) and (26) imply that for any 0 < ¢ < log3 there exists
0 =9(e) > 0 such that Hy4.(1+,1) > I(1 +z,1) for z € (0,9).
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