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Abstract: Condition of Non-linear stability of dumbell satellites, in ellipti-
cal orbit in the central gravitational field of force under the combined effects
of various perturbing forces has been studied. The system comprises of two
satellites connected by a light, flexible and inextensible cable, moves with tight
cable like a dumbell satellite in elliptical orbit, in the central gravitational field
of force. The gravitational field of the Earth is the main force governing the
motion and various perturbing forces like magnetic field of the Earth, oblate-
ness of the Earth and forces of general nature are considered to be perturbing
forces, disturbing in nature. Non-linear oscillations of dumbell satellites about
the equilibrium position in the neighbourhood of main resonance ω = ν, under
the influence of perturbing forces which is suitable for exploiting the method
of Bogoliubov-Krilov and Mitropoloskey, has been discussed, considering ’e’ to
be samll parameter and the condition of stability of dumbell satellites has been
discussed using poicare method. It has been observed that the discontinuing
in the amplitude of oscillations occur at a frequency less than the natural fre-
quency.This discontinuity of amplitude of oscillations of the system is important
for analysing the condition of stability of dumbell satellite in elliptical orbit.
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1. Introduction

The present paper is devoted to the analysis of condition of stability of cable
connected satellites system, connected by a light, flexible and inextensible ca-
ble moving in the central gravitational field of the Earth under the combined
effects of the Earth magnetic field, oblateness of the Earth and the perturbing
force of general nature in non-resonance and resonance cases. The satellites
are cosidered to be charged material particles and the motion of the system in
studied, relative to their centre of mass, under the assumption that the later
moves along elliptical orbit. The cable connecting the two satellites is taut and
nonelastic in nature, so that the system moves like a dumbell satellite. Many
space configurations of cable connected satellites system have been proposed
and analysed like two satellites are connected by a rod (dumbell satellite), see
[4], two or more satellites are connected by a tether, M. Krupa et al [6,7], Belet-
sky and E.H. Levin [2], A.K. Mishra and V.J. Modi [9] and spring connected
satellites, see [13]. All these authors have mentioned numerous important ap-
plications of system and stability of relative equilibrium, if the system moves
in a circular and elliptical orbit. Beletsky and Novikova (see [3]) studied the
motion of a system of two satellites connected by a light, flexible and inexten-
sible string in the central gravitational field of force relative to the centre of
mass, which is itself assumed to move along a keplerian elliptical orbit, under
the assumption that the two satellites are moving in the plane of motion of the
centre of mass. The same problem in its general form was further investigated
Singh see [18,19], these works conducts the analysis of relative motion of the
system for the elliptcal orbit of the centre of mass in two dimensional as well as
three dimensional cases. Narayan and Singh see [10,11,12], studies non-linear
oscillations due to solar radiation pressure the centre of mass of the system
moves along an elliptical orbit. Sharma and Narayan [16,17], studies the com-
bined effects of the solar radiation pressure and the forces of general nature on
the motion and stability of cable connected satellites system in elliptical orbit.
Singh et al [20,21], studied the non-linear effects of the Earth’s oblateness in the
motion and stability of cable connected satellites system in elliptical orbit Das
et al [5] and Narayan et al [29] studied the non-linear effects of Earth’s magnetic
field on the stability of cable connected system in inclined and equitorial orbit.

The different aspects of the problem of stability of a satellites in low and
high altitude orbit with different perturbation forces have been studied by many
scientists. Special references are mentioned, Sarychev et al [22,23] studied the
problem determining all equilibria of a satellite subjected to gravititational and
acrodynamic torque in circular orbit. All bifurcation values of the parameters
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corresponding to qualitative changes of stability domain are determined. Pala-
cian in [24], studied the dynamics of a satellites orbiting are Earth like planet
at low altitude orbit and perturbation is caused by in homogenious potential
due to the Earth. C. Labort in [26] studied bifurcation of relative equilibria in
the main problem of artificial satellite theory for a prolate body. Markeev et al
[25] studied the planar oscillations of a satellite in a circular orbit. Ayub Khan
etal [14] investigated Choatic motion in problem of dumbell satellite.

In the present paper, we have studied the combined effects of magnetic field
of the Earth, oblateness of the Earth and the external periodic forces of general
nature on conditon of stability of dumbell satellite in elliptical orbit.

The perturbing forces due to the Earth’s magnetic field results from the
interaction between space craft’s residual magnetic field and the geomagnetic
field. The perturbing force is arising due to magnetic moment, eddy current and
hysteresis, out of these the space craft magnetic moment is usually the dominant
source of disturbing effects. Nevertheless a distant satellite beyond gravitational
field of the Earth in addition to magnetic field of earth, it could still expected to
be affected by general nature of external forces could arise due to dissipation of
the energy generated on account of friction of bodies in the atmosphere by tidal
forces, gravitational radiation etc. these forces though small can significantly
affect the oscillations of the system under consideration. These forces could be
modelled as frictional forces with small dissipation coefficient. Further more
the forces generates by the multipole moments and absportion of gravitational
waves at resonance frequency, could be characterized as external periodic forces
having a slowly varying frequency and these forces could be estimated by certain
model assumption.

Thus in order to study the condition of non-linear stability of dumbell satel-
lite system on realistic basis, it is essential to consider the combined influence
of the Earth’s magnetic field, oblateness of the Earth and periodic forces of
general nature.

2. Equation of Motion

The combined effects of the geomagnetic field and oblatness of the Earth on
the motion and stability of the satellites connected by a light, flexible and
inextensible cable, under the influence of the central gravitational field of the
Earth has been considered.

The analysis of the motion and stability of the cable connected satellites
system has been restricted to two dimensional case, we have assumed that the
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Figure 1: Rotating frame of reference

satellites are moving in the orbital plane of the centre of mass of the system.
The analysis of stability and instability of motion of the system under the
influence of the above mentioned perturbing forces has been simulated in the
two dimensional plane. The motion and stability of cable connected satellites
system under the effects of Earth’s magnetic field Das et al [5], Narayan et al
[29] and combined effects of earth magnetic field and oblateness of the Earth,
Narayan and Pandey [30], in elliptical and in low altitude oribit have been
studied.

The equation of two dimensional motion of one of the satellites under the
rotating frame of reference in Nechville’s co-ordinate system (see [15]) relative
to the centre of mass which moves along equitorial orbit under the combined
influence of the Earth’s magnetic field and oblateness of the Earth can be
deduced and represented in (2.1).

x′′ − 2y′ − 3xρ =λαx+
4Ax

ρ
− B

ρ
cos δ,

y′′ − 2x′ =λαy −
Ay

ρ
− Bρ′

ρ2
cos δ.

(2.1)

Here the x-axis is in the direction of the position vector joining the centre of
mass and the attracting centre and Y -axis is along the normal to the position
vector in the orbital plane of the centre of mass in the direction of motion of
satellite m1, where A is the oblateness due to Earth and B is the magnetic field
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of the Earth. Moreover

A =
3k2

ρ2
, λ =

p3ρ4

µ

(m1 +m2)λ

m1m2

,

B = −
(

m2

m1 +m2

)[

Q1

m1

− Q2

m2

]

µE
√
µρ
,

ρ =
R

P
=

1

1 + e cos v
.

(2.2)

The dipole of the Earth has its axis inclined from the polar axis of the Earth
by a value of 1104′. The angle φ and Ω completely defined the position of ke,
the unit vector along the axis of magnetic dipole of the Earth.

In this case the condition for the constraint is given by the inequality:

x2 + y2 ≤ 1

ρ2
. (2.3)

Figure 2: Orientation of ke

where λ denotes the Lagrange’s multiplier and µ denotes product of the gravi-
tational contant and the mass of the Earth. where

Qi =
change qiof the ithparticle

velocity of light
, i = 1, 2,
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on the mass m1 and m2, where v is the true anomaly of the centre of mass of
the system in elliptical orbit.

and ρ =

(

R

P

)

=

(

1

1 + e cos v

)

,

where p and e are the focal parameter and the eccentricity of the orbit of
the centre of mass. In equation (2.1)the prime denotes differentiation with
respected to v. When the motion of the satellite m1 is determines with the
help of equation (2.1), the motion of the satellite m2 is easily determined with
the help of the identify

m1 ~ρ1 +m2 ~ρ2 = 0, (2.4)

where ~ρ1 and ~ρ2 are the radius vectors of the satellites of masses m1 and m2

respectively with respect to the centre of mass of the system.

In order to discuss the non-linear oscillations of the system, we transform
the equation (2.1) into polar forms by substituting

x = (1 + e cos v) cosψ,

y = (1 + e cos v) sinψ, (2.5)

where ψ is the angular deviation of the line joining the centre of mass and the
cable connected satellites with the stable position of equilibrium joining with
respect to ψ and λα we obtain:

(1 + e cos v)ψ′′ − 2eψ′ sin v + 3 sinψ · cosψ + 5A (1 + e cos v)2 sinψ · cosψ
= B cos δ (1 + e cos v) · sinψ −B cos δ · sin v · cosψ + 2e sin v. (2.6)

The equation (2.6) is the equation of motion of a dumbell satellite in the
central gravitational field of the Earth’s magnetic field and oblateness due to
Earth. The equation determining the Lagrange’s multiplier is given by:

(1 + e cos v)4
(

ψ′ + 1
)2

+ (1 + e cos v)3
(

3 cos2 ψ − 1
)

−B cosφ (1 + e cos v)3 (cosψ + e cos (ψ + v))

−A (1 + e cos v)3
(

4 cos2 ψ − sin2 ψ
)

= λα ≥ 0. (2.7)

The non-linear osillations described by (2.6) take place as long as inequality
given below is satisfied.

(1 + e cos v)4
(

ψ′ + 1
)2

+ (1 + e cos v)3
(

3 cos2 ψ − 1
)
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−B cos δ (1 + e cos v)3 (cosψ + e cos (ψ + v))

−A (1 + e cos v)3
(

4 cos2 ψ − sin2 ψ
)

≥ 0, (2.8)

where v and e are respectively true anomaly of the centre of mass of the system
and the eccentricity of the orbit of the system. The prime denotes differenti-
ation with respect to true anomaly v.The system of equation (2.1) oscillates
about the stable position of equilibrium in which it lies wholly along the radius
vector joining the centre of mass and the centre of force Narayan et al (2010),
substituting 2ψ = η, the equation (2.1) can be expressed as follows:

η′′ + 3 sin η = 4e sin v + 2eη′ sin v − 5A (1 + e cos v)2 sin η − η′′e cos v

+ 2B cos δ sin
η

2
+ 2eB cos δ sin

(

η − v

2

)

. (2.9)

Equation (2.9), describes non-linear oscillations of the dumbell satellites in
elliptical orbit, in central gravitational field of the oblate Earth’s together with
the magnetic field of the Earth.

The presence of the friction force γψ′ and the small periodic force E sin νv
results in the following equation rather than (2.9).

η′′ + 3 sin η = 4e sin v + 2eη′ sin v−η′′e cos v − 5A (1 + e cos v)2 sin η

+ e2B cos δ sin
η

2
+ 2eB cos δ sin

(

η − γ

2

)

+ E sin νv + γη′, (2.10)

where γ and E are some phenomenological parameters characterizing the tidal
and periodic forces acting on the system and have been assumed to be the order
of e, where ν is the frequency of the external periodic forces. However, these
parameters can be determines from specific model assumptions concerning these
problems.

3. Non-Linear Non-Resonance Oscillations of the System

about the Position of Equilibrium for Small Eccentricity

The non-linear oscillations of the system of cable connected satellites under the
influence of above mentioned forces described (2.10), will be investigated for
non-resonance cases on the assumption that γ and E are of order of e. This
is justified on account of the fact that these estimates are always concerned
with a certain model assumptions. Hence setting E = eE1 and λ = eλ1 and
B cos δ = eB cos δ, these equation (2.10) can be put in the form:

η′′ + ω2η =e
[

B (η − sin η) + 2η′ sin v + 4 sin v − η′′ cos v
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+ E1 sin νv + γ′η′ + 2B cos δ sin
η

2
− 5A sin η

]

+ e2
[

10A cos v sin η + 2B cos δ sin
(

v − η

2

)

]

. (3.1)

In the equation (3.1) ω2 = 3 and β =
ω2

e
. Moreover the non-linearity will

be assumed to be the order of e.
The system described by the equation (3.1) moves under the forced vibration

due to the presence of the magnetic field of the Earth and the external periodic
forces of general nature on the right hand side of the equation. We are benifitted
by the smallness of the eccentricity ′e′ in equation (3.1) and hence solution may
be obtained by exploiting the Bogoliubov, Krilov and Mitropolsky method. For
e = 0, the generating solution of zeroth order are:

η = a cos θ; θ = ωv + θ∗,

where the amplitude ′a′ and phase ′θ′ are constant, which can be determine by
the intial conditions. The solution of equation (3.1) is obtained in the form.

η = a cos θ + eu1 (a, θ, v) + e2u2 (a, θ, v) + · · · , (3.2)

where the amplitude ′a′ and phase ′θ′ are determine by the differential equations

da

dv
=eA1 (ar) + e2A2 (a) , (3.3)

dθ

dv
=ω + eB1 (a) + e2B2 (a) . (3.4)

From equation (3.2), we find
dη

dv
and

d2η

dv2
and substituting the values of η,

dη

dv
and

d2η

dv2
in eqution (3.1). In this final equation, equating the coefficients of

like powers of ′e′, we get:

ω2 ∂
2u1

∂θ2
+ 2ω

∂2u1

∂θ∂v
+
∂2u1

∂v2
− 2ωA1 sin θ − 2ωB1 cos θ + ω2u1

= 4 sin v + β (η − sin η) + 2η′ sin v − η′′ cos v + E1 sin νv + γ′η′

+ 2B cos δ sin
(η

2

)

− 5A sin η, (3.5)

ω2 ∂
2u2

∂θ2
+ 2ω

∂2u2

∂θ∂v
+
∂2u2

∂v2
+ ω2u2
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= (2 sin v + γ1)

[

(

A1 cos θ − aB1 sin θ + ω
∂u1

∂θ
+
∂u1

∂v

)

]

− cos v

[

∂2u1

∂θ2
ω2 + 2ω

∂2u1

∂θ∂v
+
∂2u1

∂v2
− 2aωB1 cos θ

− 2ωa1 sin θ

]

+

(

aB2
1 −A1

∂A1

∂a

)

cos θ +

(

A1a
∂B

∂a
+ 2A1B1

)

sin θ

− 2ωB1

∂2u1

∂θ2
−A1

∂2u1

∂a∂v
− 2B1

∂2u1

∂θ∂v
− 2ωA1

∂2u1

∂a∂θ
−−2B1

∂2u1

∂θ∂v

− 2ωA1

∂2u1

∂a∂θ
+ 10A cos v · sin η + 2B1 cos δ sin

(

v +
η

2

)

+ 2aωB2 cos θ + 2ωA2 sin θ. (3.6)

Using Fourier expansion given by:

sin (a cos θ) =2
∞
∑

k=0

(−1)k J2k+1 (a) · cos (2k + 1) θ,

cos (a cos θ) =J0 (a) + 2
∞

∑

k=0

(−1)k J2k (a) · cos 2kθ,

(3.7)

where Jk,k = 0, 1, 2, 3.... stands for Bessel’s function. Substituting of these
values in equation (3.5) and determines A1 (a) and B1 (a) in such a way as
u1 (a, θ, v), should not contain resonance terms and hence, equating the coeffi-
cients of sin θ and cos θ to zero, seperately we obain:

A1 (a) =
[γ1

2
, a

]

,

B1 (a) =
−β1

2ωa
(a− J1 (a)) +

10AJ1 (a)

2ωa
− 2B cos δ

2ωa
J1

(a

2

)

.

(3.8)

With the help of equation (3.8) it is not difficult to obtain u1 (a, θ, v) in the
form

u1 (a, θ, v) =
4

ω2 − 1
· sin v +

3a

2 (2ω + 1)
· cos (v + θ)

+
a

2 (2ω − 1)
· cos (v − θ) +

E1 sin νv

ω2 − ν2

− β

2ω2

∞
∑

k=1

(−1)k

k (k + 1)
· J2k+1 (a) · cos (2k + 1) θ

+
β cos δ

2ω2

∞
∑

k=1

(−1)k J2k+1

(a

2

)

k (k + 1)
· cos (2k + 1) θ.

(3.9)
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In order to obtain the second approximation of the solution, we need to deter-
mine A2 (a), B2 (a) and u1 (a, θ, v) as obtained in (3.8) and (3.9) in equation
(3.6) and equating the coefficients of sin θ and cos θ to zero with a view to
eliminate resonance terms from u1 (a, θ, v), we obtain:

A2 (a) =
γ1

4ω3a

[

(aω − 1) (2β + 10A) J1 (a)

+
(

1 − 2ω2a
)

(

2B cos δJ1

(a

2

)

+ βa
)

− γ1a

4ω2

{

(2β + 10A) J ′
1 (a) −B cos δJ ′

(a

2

)

}

,

B2 (a) =

[

− γ2
1

4aω2
+
ω (1 − 4ω)

4 (4ω2 − 1)
+

ω (ω − 1)

4 (4ω2 − 1)
− 1

8ω2a
{

(2β + 10A)2 J2
1 (a) + 4B2 cos2 δJ2

1

(a

2

)

− β2a2

− 4 (2β + ωA)βJ1 (a)J1

(a

2

)

}

− 2βa (2β + 10A) J1 (a) + 4βaB cos δJ1

(a

2

)

]

.

(3.10)

Thus, in the first approximation, the solution is given by

η = a cos θ, (3.11)

where, the amplitude ′a′ and the phase ′θ′ are given by:

da

dv
=
eγ1a

2
=
γa

2
,

dθ

dv
=ω +

1

2ωa
(a− 2J1 (a)) +

10eAJ1 (a)

2ωa
−
e2B cos δJ1

(a

2

)

2ωa

=ω +
1

2ωa
(2J1 (a) − a) +

5eAJ1 (a)

ωa
−
eB cos δJ1

(a

2

)

ωa
,

(3.12)
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and in the second approximation, the solution is obtaines as:

η = a cos θ +
4e sin v

ω2 − 1
+

3ea

2 (2ω + 1)
cos (v + θ) +

ea

2 (2ω − 1)
cos (v − θ)

+
E sin νv

ω2 − v2
− eβ

2ω2

∞
∑

k=1

(−1)k

k (k + 1)
J2k+1 (a) cos (2k + 1) θ

+
eB cos δ

2ω2

∞
∑

k=1

J2k+1

(a

2

)

k (k + 1)
cos (2k + 1) θ

(3.13)

where, the amplitude a and phase ′θ′ are given by:

da

dv
=
γa

2
+

eγ

4ω3a

[

{

(aω − 1) (2β + 10A) J1 (a)

+
(

1 − 2ω2a
)

(

2B cos δJ1

(a

2

))

+ βa

− e

4ω2

{

(2β + 10A) J ′
1 (a) −B cos δJ ′

1

(a

2

)}

]

,

dθ

dv
=ω +

1

2ωa
(2J1 (a) − a) +

5eAJ1 (a)

ωa
−
eB cos δJ1

(a

2

)

ωa

+ e2

[

−r21
4aω2

+
ω (1 − 4ω)

4 (4ω2 − 1)
+

(ω − 1)

4 (4ω2 − 1)

]

− 1

8ω2a2

[

(2β + 10A)2 J2
1 (a)

[

+4B2 cos2 δJ2
1

(a

2

)

− β2a2 − 4 (2β + 10A) βJ1 (a) J1

(a

2

)

− 2βa (2β + 10A) J1 (a) + 4βaB cos δJ1

(a

2

)

]

.

(3.14)

Thus, the amplitude of oscillation varies in the first approximation on ac-
count of the presence of dissipative force, which was constant in the central
gravitational field of oblate Earth and magnetic field of the Earth. Moreover,
from equation (3.2), it is clear that for positive γ, the system is self excited
and the amplitude increases monotonically. However, if γ is negative a [v] → 0
as v → ∞ and hence oscillations will damp down with passage of time an the
equilibrium regime a = 0 is stable.

In the second approximation, it follows from equation (3.14) that for positive
γ, amplitude of oscillations a (υ) increases monotonically and also variation of
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amplitude is of order of eccentricity. the conditions are reversed for negative
value of γ.

Moreover it is obvious that the presence of sine forces give rise to the exis-
tance of resonance ω = v and ω = 1 and parametric resonance appear only for

ω = ±1

2
upto the second approximation of the solution.

4. Non-Linear Planar Oscillation of Cable Connected Satellites

System in Elliptical Orbit at the Main Resonance ω = v

The non-linear oscillations of the system of cable connected satellites under the
influence of above mentioned forces described by the equation (2.10) will be
investigated for the main resonance case on the assumption that γ and E are
of oder of e. This is justified on account of the fact that these estimations are
always concerned with a certain model assumptions. Hence setting E = eE1

and r = eγ1 and B cos δ = eB cos δ, then the equation (2.10) can be put in the
form:

η′′ + ω2η =e

[

β (η − sin η) + 2η′ sin v + 4 sin v − η′′ cos v

+ E1 sin νv + γ′η′ + 2B cos δ sin
(η

2

)

− 5A sin η

]

+ e2
[

10A cos v sin η + 2B cos δ · sin
(

v − η

2

)]

.

(4.1)

In equation (4.1), ω2 = 3 and β =
ω2

e
. Moreover, the non-linearly (η − sin η)

will be assumes to be the order of e.
Now, we construct the asymptotic solution of the system representing (4.1)

in the most general case which is valid at and near the main resonancce ω = ν,
exploiting the well known Bogoliubov-Krilov and Mitropolsky method. The
solution of equation (4.1) in the first approximation willbe sought in the form:

η =a cos (νv + θ) , (4.2)

da

dv
=eA1 (a, θ) , (4.3)

dθ

dv
= (ω − v) + eB1 (a, θ) , (4.4)

where A1 (a, θ) and B1 (a, θ) are particular solution periodic with respect to θ
of the system:
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(ω − v)
∂A1

∂θ
− 2aωB1

=
1

2π2

σ=+∞
∑

σ=−∞

∫

2π

0

∫

2π

0

e−iσθf0

(

a, η, η′, η′′
)

e−iσθ′ cos k dv dk,

a (ω − v)
∂B1

∂θ
+ 2ωA1

= − 1

2π2

σ=+∞
∑

σ=−∞

e−iσθ

∫

2π

0

∫

2π

0

f0

(

a, η, η′, η′′
)

e−iσθ sin k dv dk, (4.5)

where k− v = θ′ and f0 (aηη′η′′) is the coefficient of e on the right hand side of
equation (4.1), simple integration gives us

(ω − v)
∂A1

∂θ
− 2aωB1

= β
(

a− 2J1 (a) − E1 sin θ − 2B cos δJ1

(a

2

)

− 10AJ1 (a)
)

,

a (ω − v)
∂B1

∂θ
− 2ωA1 = γ1a− E1 cos θ, (4.6)

where J1 (a) is the Bessel’s function of the first order. The periodic solution of
the system given by equation (4.5) can be easily obtaines as:

A1 =
γ1a

2ω
− E1 cos θ

(ω + v)
, (4.7)

B1 = − α

2aω
(a− 2J1 (a)) +

E1 sin θ

a (ω + v)
+

2B1 cos δ

2aω
J1

(a

2

)

+
10A1J1(a)

2aω
,

where the amplitude ′a′ and phase ′θ′ are given by the system of differential
equations:

da

dv
=
γa

2
− E cos θ

(ω + v)
, (4.8)

dθ

dv
= ω − v − 1

2aω
(a− 2J1(a)) +

Esinθ

a (ω + v)
+

2B cos δ

2aω
J1

(a

2

)

+
10AJ1 (a)

2ωa
.

The system (4.8) in independent of the eccentricity of the orbit of the centre
of mass. Hence, we conclude that the oscillations of the system in the first
approximation is independent of the form of the orbit of the centre of mass.



186 A. Narayan, M.D. Pandey

The equation (4.9) cannot be integated in a closed form due to dependence
of right hand side ′a′ and ′θ′. However qualitative aspects of the solution can
be examined with the help of poincare theory [28].

da

dv
=aδe (a) − E

(ω + v)
cos θ,

dθ

dv
=ωe (a) − v +

E

(ω + v)
sin θ,

(4.9)

where ωe (a) = ω − 1

2aω
(a− 2J1(a)) +

2B cos δ

2aω
J1

(a

2

)

+
10AJ1 (a)

2aω
.

The parameter δe (a) and ωe (a) introduced here denoted, respectively the
equivalent damping decrement and equivalent frequency of non-linear oscilla-
tions of the dumbell system when the impressed force is absent.

We now examine the stationary regime of oscillations of the system in the
first approximation. the stationary state of oscillation is defined by:

da

dv
= 0,

dθ

dv
= 0.

Hence, from the set of equation (4.9) retaining upto second order term in the
amplitude, we obtain:

2ωδe (a) − Ecosθ =0,
[

ω2
e (a) − v2

]

a+ E sin θ =0.
(4.10)

Eliminating the phase θ, we obtain:

[

ω2
e (a) − v2

]2
=

[

E2

a2
− γ2

]

. (4.11)

In order to obtain this relation in the neighbourhood of the resonance fre-
quency, we get:

v = ω + δ.

Assuming that the quantity δ is small, we obtain the relation (3.6) into a
more convenient form:

δ = −La2 +
1

2ω

√

E2

a2
− γ2, (4.12)

where

L =

[

1

8
+
B cos δ

128
+

5A

8
+
B cos δ

32ω2
+
B2 cos2 δ

512ω2
+

5A

16ω2

]

.
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Figure 3: Resonance curve in the case of main resonance ω = ν under
the combined influence of earth magnetic field and small periodic forces

Figure 4: Resonance curve in the case of main resonance ω = ν under
the combined influence of earth magnetic field & small periodic forces

A schematic representation of the behaviours of the relation (4.12) in the
range of the parameter E and γ is given in figure (3). The dotted line in the
figure represents the skelton curve v = ωe (a). This after using the relation
v = ω + δ, takes the form

δ = −La2 (4.13)

We notice here, that as δ increases, the amplitude of oscillation increases
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along MA but NC is increased discontinuously from C to D and further de-
cresed along DN with the increase in δ but at B is falls abruptly to A. Thus the
section BC corresponds to the unstable amplitude, which the remaining por-
tion of the response course corresponds to the stable amplitude. The specifid
properly of the curve is the fact that three staionary amplitude of oscillations
situated in the region ABDC corresponds to the same frequency of external
force over some frequency range when the parameter E and γ are connected
by certain relationship. Two of the amplitudes are stable while the third which
corresponds to the section BC of the curve is unstable.

We shall determine the relation that must exist between the parameters
of the necessary condition for instability (Jump an fall) found at A and B is
dδ

da
= ∞.

Proceeding with the equation (4.13), we obtain:

4L2a6 + 8δLa4 + 4δ2a2 +
γ2a2

ω2
=

(

E2

ω2

)

. (4.14)

Differenciating with respect to δ, the condition of instability takes the form:

4δ2 + 12δLa4 + 16δLa2 +
γ2

ω2
= 0. (4.15)

Here, we notice that both the roots of δ are negative, that is the effects occur
at a frequency of the external periodic force which is less than the frequency of
natural oscillation of the system. the maximum value of the amplitude is defined

by the condition
da

dδ
= 0. Thus we obtain amax =

(

E

γ

)

. Also, we obtain, from

(4.15) the critical value Ek of the amplitude of the external periodic force:

E2
k =

γ
3

2

√
2ω2

.

The break down of the amplitude of the forced oscillation is possible only
when E > Ek. We observe from the figure 5, figure 6, figure7.... figure 12,
that a slight deformation of amplitude of oscillating system when the combined
influence of magnetic field of the Earth and the oblateness of the Earth are
taken into account as shown in figure 5 to figure 12. For the value of E either
less than or equal to Ek. The equation (4.12) represents symmetrical curves,
which does not represent any discontinuity in the amplitude of the system.
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Figures 5 and 6: Behaviour of the system under perturbing forces

Figures 7 and 8: Behaviour of the system under perturbing forces

5. Discussion and Conclusion

The condition of non-linear stability of cable connected satellites system under
the combined influence of the Earth’s magnetic field ,oblateness of the Earth
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Figures 9 and 10: Behaviour of the system under perturbing forces

Figures 11 and 12: Behaviour of the system under perturbing forces

and perturbing forces of general nature in elliptical orbit has been considered.
It is assumed that the system moves like a dumbell satellite. The simulation
technique has been adopted to analyze the stability of the system. We thus
conclude that if a dumbell satellite in elliptical orbit is acted upon by the
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Earth’s magnetic field, oblateness of the Earth and perturbing forces of general
nature with slowly varying frequency for which the amplitude E of external
periodic forces is greater than the critical value Ek and there is small dissipation
of energy in the system then the amplitude of oscillation of the system suffers
discontinutiy in the neighbouhood of the main resoance ω = ν. When the
frequency of the external periodic forces varies slowly, the amplitude of the
forced oscillation breaks down at a certain point as the frequency decreses and
is jumps up as the frequency increases. This discontinuity in the amplitude of
the oscillation occurs at a frequency of the external periodic force, which is less
than the frequency of the natural oscillation.This discontinuity in the amplitude
of the oscillation of the system may affect stability of the system and is likely
to change the orbit parameter of the system.
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