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1. Introduction

In this paper we consider the fractional programming problem:

max
x∈D

f(x)

g(x)
, (1.1)

where D = {x ∈ Rn | Ax ≤ b} and g(x) > 0 on D. g, f : D −→ R are scalar
functions.

Problem (1.1) has many applications in economics and engineering. For
instance, problems such as minimization of average cost function [3] and maxi-
mization of consumption per a capital [3] belong to class of fractional program-
ming.

Depending on type of functions f and g, problem (1.1) can be split into:

• (1.1) is called a linear fractional program if all functions f(x) and g(x)
are affine;

• (1.1) is said to be a quadratic fractional program if f(x) and g(x) are
quadratic functions;

• (1.1) is called a concave-convex fractional program if f(x) is concave
and g(x) is convex;
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• (1.1) is called a convex-concave fractional program if f(x) is convex
and g(x) is concave.

The well known existing methods for solving problem (1.1) are variable
transformation [5], direct nonlinear programming approach [1], and parametric
approach [2]. So far less attention paid to convex-concave fractional program-
ming. We will reduce it to quasiconvex maximization problem and then apply
global optimality conditions [4].

2. Global Optimality Conditions

Consider convex-concave fractional programming problem

max
x∈D

{

ϕ(x) =
f(x)

g(x)

}

, (2.1)

f(x) and g(x) are differentiable functions, D is a convex subset in Rn, and f(x)
is convex on D and g(x) is concave on D, f(x) > 0 and g(x) > 0 for all x ∈ D.
Introduce the level set of the function ϕ(x) for a given C > 0.

L(ϕ,C) = {x ∈ D| ϕ(x) ≤ C}

Lemma 2.1. The set L(ϕ,C) is convex.
Proof. Since g(x) > 0 on D, then ϕ(x) ≤ C,∀x ∈ D can be written as

follows:
f(x)− Cg(x) ≤ 0,∀x ∈ D.

Clearly, a set defined by

M = {x ∈ D| f(x)− Cg(x) ≤ 0}

is convex which implies convexity of L(ϕ,C).

Definition 2.1. A function f : Rn → D is said to be quasiconvex if

f(αx+ (1− α)y) ≤ max{f(x), f(y)}

holds for all x, y ∈ Rn and α ∈ [0, 1].

Lemma 2.2. (see [4]) The function f(x) is quasiconvex if and only if the
set L(f,C) is convex for all C ∈ R.

Then it is clear that the function ϕ(x) is quasiconvex on D.
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The optimality condition for problem (1.1) will be formulated as follows
(see [4]):

Theorem 2.1. Let z be a solution to problem (1.1), and let EC(ϕ) = {y ∈
Rn| ϕ(y) = C}.
Then

〈ϕ′(y), x− y〉 ≤ 0 (2.2)

for all y ∈ Eϕ(z)(ϕ) and x ∈ D.

If in addition ϕ′(y) 6= 0 holds for all y ∈ Eϕ(z)(ϕ), then condition (2.2) is
sufficient for z ∈ D to be a global solution to problem (1.1).

Condition (2.2) can be simplified as:

n
∑

i=1

{

∂f(y)

∂xi
g(y)−

∂g(y)

∂xi
f(y)

}(

xi − yi

g2(y)

)

≤ 0,

for all y ∈ Eϕ(z)(ϕ) and x ∈ D.

Lemma 2.3. If for feasible points x, y ∈ D, the inequality

〈ϕ′(y), x− y〉 > 0

holds then ϕ(x) ≥ ϕ(y), where ϕ′ denotes the gradient and 〈, 〉 denotes the
scalar product of two vectors.

Proof. On the contrary, assume that ϕ(x) < ϕ(y). Since ϕ is quasiconvex,
we have

ϕ(αx+ (1− α)y) ≤ max{ϕ(x), ϕ(y)} = ϕ(y).

By Taylor’s formula, there is a neighborhood of the point y on which

ϕ(y + α(x− y))− ϕ(y) = α

(

〈ϕ′(y), x− y〉+
o(α||x − y||)

α

)

≤ 0,

α > 0. Taking into account that

o(α||x − y||)

α

α→0
−−−−→ 0

We obtain 〈ϕ′(y), x− y〉 ≤ 0 which contradicts 〈ϕ′(y), x − y〉 > 0.

This completes the proof.
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3. Algorithm and Approximation Set

Definition 3.1. The set A(z) defined for a given m by

Am
z = {y1, y2, . . . , ym| yi ∈ Eϕ(z)(ϕ) ∩D, i = 1, 2, . . . ,m}

is called an approximation set.

Lemma 3.1. If there are a point yi ∈ Am
z and a feasible point z ∈ D such

that
〈ϕ′(yj), uj − yj〉 > 0

then ϕ(uj) > ϕ(z), where 〈ϕ′(yj), uj〉 = max
x∈D

〈ϕ′(yj), x〉.

The proof follows immediate from Lemma 2.3.
Now we can construct an algorithm for solving problem (1.1) approximately.

Algorithm

Step 1. Choose xk ∈ D, k := 0. zk = arglocmax
x∈D

ϕ(x), and m is given.

Step 2. Construct an approximation set Am
zk

at zk.
Step 3. Solve Linear programming problems:

max
x∈D

〈ϕ′(yi), x〉 , i = 1, 2, . . . ,m

Let ui be solutions to above problems:

〈ϕ′(ui), x〉 = max
x∈D

〈ϕ′(yi), x〉, i = 1, 2, . . . ,m.

Step 4. Compute ηk :

ηk = max
1≤i≤m

〈ϕ′(yi), ui − yi〉 = 〈ϕ′(yj), uj − yj〉.

Step 5. If ηk > 0 then xk+1 := uj, k := k + 1 and go to Step1.
Step 6. Terminate, zk is an approximate global solution.

Theorem 3.1. If ηk > 0 for all k = 0, 1, . . ., then the sequence {zk}
constructed by the Algorithm is a relaxation sequence, i.e,

f(zk+1) ≥ f(zk), k = 0, 1, . . . .

The proof follows from Lemmas 2.3 and Lemma 3.1.
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4. Numerical Experiments

In order to implement the proposed algorithm, we consider the problem of the
following type:

max
x∈D

{

ϕ(x) =
〈Ax, x〉 + 〈b, x〉+ k

〈Cx, x〉+ 〈d, x〉 + e

}

,

where D = {x ∈ Rn| αi ≤ xi ≤ βi, i = 1, 2, . . . , n}, k = 2000, e = 3000.

Elements of the approximation set are defined as:

yi = zk + αhi, i = 1, 2, . . . ,m.

Where zk is a local solution found by the conditional gradient method starting
from an arbitrary feasible point xk ∈ D. Vectors hi are generated randomly.
Parameter α can be found from the equation ϕ(yi) = ϕ(zk) in the following:

α =
〈(ϕ(zk)C −A)hi, zk〉+ 〈(ϕ(zk)C −A)zk + ϕ(zk)d− b− ϕ(zk)e, hi〉

〈(ϕ(zk)C −A)hi, hi〉
.

The following problems have been solved numerically by the proposed al-
gorithm and in all cases the global solutions are found.

Problem 1. Let

A =

(

1 2
−1 3

)

, C =

(

−2 1
−1 −4

)

, b =

(

2
1

)

d =

(

1
5

)

,

D = {−1 ≤ x1 ≤ 3, − 2 ≤ x2 ≤ 4}.

Solution. x∗ = (−1, 4), f(x∗) = 0, 6970.

Problem 2. Let

A =





1 −2 −1
−1 3 0
4 1 2



 , C =





2 1 3
0 2 1

−1 1 −1



 , b =





3
2
4



 , d =





2
1
1



 .

D1 = {1 ≤ x1 ≤ 3, 2 ≤ x2 ≤ 5, 1 ≤ x3 ≤ 4}.

Solution. x∗ = (1, 5, 4), f(x∗) = 0, 7190.

D2 = {−1 ≤ x1 ≤ 3,−2 ≤ x2 ≤ 4,−1 ≤ x3 ≤ 5}.

Solution. x∗ = (3,−2, 5), f(x∗) = 0, 7255.
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Problem 3. Let

A =









1 1 1 1
1 2 1 1
1 1 3 1
1 1 1 4









, C =









−2 1 1 2
1 −1 −1 −2
1 −1 −3 1
2 −2 1 −9









,

b =









2
−2
3

−4









, d =









1
−2
3

−1









.

D = {−2 ≤ x1 ≤ 2,−1 ≤ x2 ≤ 4,−1 ≤ x3 ≤ 5,−3 ≤ x4 ≤ 1}.

Solution. x∗ = (2, 4, 5, 1), f(x∗) = 0, 7688.

Problem 4. Let

A =













1 1 1 1 1
1 2 1 1 1
1 1 3 1 1
1 1 1 4 1
1 1 1 1 5













, C =













−2 1 1 2 1
1 −1 −1 −2 −1
1 −1 −3 1 1
2 −2 1 −9 −2
1 −1 1 −6 −4













,

b = (1,−8,−3, 2, 5)′, d = (−2, 2, 5,−6, 4)′,

D = {−3 ≤ x1 ≤ 2,−2 ≤ x2 ≤ 3,−1 ≤ x3 ≤ 5,−1 ≤ x4 ≤ 4,−4 ≤ x5 ≤ 1},

Solution. x∗ = (2, 3, 4, 1, 6), f(x∗) = 0, 8666.
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