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1. Introduction

In this paper we consider the fractional programming problem:

f(x)
2eh g(z) "’ (1-1)

where D = {x € R" | Ax < b} and g(z) >0on D. g,f:D — R are scalar
functions.

Problem (1.1) has many applications in economics and engineering. For
instance, problems such as minimization of average cost function [3] and maxi-
mization of consumption per a capital [3] belong to class of fractional program-
ming.

Depending on type of functions f and g, problem (1.1) can be split into:

e (1.1) is called a linear fractional program if all functions f(x) and g(x)
are affine;

e (1.1) is said to be a quadratic fractional program if f(x) and g(x) are
quadratic functions;

e (1.1) is called a concave-convex fractional program if f(z) is concave
and g(x) is convex;
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e (1.1) is called a convex-concave fractional program if f(x) is convex
and g(x) is concave.

The well known existing methods for solving problem (1.1) are variable
transformation [5], direct nonlinear programming approach [1], and parametric
approach [2]. So far less attention paid to convex-concave fractional program-
ming. We will reduce it to quasiconvex maximization problem and then apply
global optimality conditions [4].

2. Global Optimality Conditions

Consider convex-concave fractional programming problem

max {(p(:ﬁ) - @} , (2.1)

z€D g(x)

f(z) and g(x) are differentiable functions, D is a convex subset in R", and f(z)
is convex on D and g(x) is concave on D, f(x) > 0 and g(x) > 0 for all z € D.
Introduce the level set of the function ¢(z) for a given C' > 0.

L(p,C) = {z € D| p(z) < C}

Lemma 2.1. The set L(p,C) is convex.
Proof. Since g(z) > 0 on D, then ¢(x) < C,Vx € D can be written as

follows:
f(z) —Cg(x) <0,Vx € D.

Clearly, a set defined by
M ={z € D| f(z) — Cg(x) < 0}

is convex which implies convexity of L(¢,C').

Definition 2.1. A function f: R"™ — D is said to be quasiconvex if

flax + (1 = a)y) < max{f(z), f(y)}

holds for all z,y € R" and « € [0, 1].

Lemma 2.2. (see [4]) The function f(x) is quasiconvex if and only if the
set L(f,C) is convex for all C' € R.

Then it is clear that the function ¢(x) is quasiconvex on D.
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The optimality condition for problem (1.1) will be formulated as follows
(see [4]):

Theorem 2.1. Let z be a solution to problem (1.1), and let Ec(¢) = {y €

R"| o(y) = C}.
Then

(W (y)z—y) <0 (2.2)

for all y € E,;)(¢) and x € D.
If in addition ¢'(y) # 0 holds for all y € E,.)(¢), then condition (2.2) is
sufficient for z € D to be a global solution to problem (1.1).

Condition (2.2) can be simplified as:
—~ [0f(y) 99(y) i — i
hCAC Y ECAC YA =B <o,
> Gatn - G 5w <
for all y € E,(;)(¢) and x € D.
Lemma 2.3. If for feasible points x,y € D, the inequality

(@' (y),z—y) >0

holds then ¢(x) > ¢(y), where ¢’ denotes the gradient and (,) denotes the
scalar product of two vectors.

Proof. On the contrary, assume that ¢(z) < ¢(y). Since ¢ is quasiconvex,
we have

plax + (1 = a)y) <max{p(z),¢(y)} = ().
By Taylor’s formula, there is a neighborhood of the point ¥ on which

Py + oz —y)) —ply) = a ((gp’(y),:z —y)+ 70(0‘"‘2_ yH)) <0,

a > 0. Taking into account that

olalle—yll) a0

(0}

We obtain (¢'(y),x — y) < 0 which contradicts (¢'(y),z —y) > 0.
This completes the proof.
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3. Algorithm and Approximation Set

Definition 3.1. The set A(z) defined for a given m by
A™ = {yt 2 Ly Y e E (@)D, i=1,2,...,m}
is called an approximation set.

Lemma 3.1. If there are a point y* € A™ and a feasible point z € D such
that 4 4 4
'), w —y) >0

then @(u’) > ¢(2), where (¢ (), ) = max(¢'(y’), z).
S
The proof follows immediate from Lemma 2.3.

Now we can construct an algorithm for solving problem (1.1) approximately.
Algorithm

Step 1. Choose zF € D, k:=0. 2~ = arglocmag o(z), and m is given.
e
Step 2. Construct an approximation set A7, at 2k,

Step 3. Solve Linear programming problems:

"(4 i=1,2....
glgg(@(y),x%z 2,...,m

Let u' be solutions to above problems:

(¢ (u?), ) = max(p'(y'),z), i=1,2,...,m.
zeD

Step 4. Compute 7y :

= max (7' (y"), ' —y) = (@ ()0l — ).

Step 5. If 1, >0 then 2*T!:=w/, k:=k+1 and go to Stepl.
Step 6. Terminate, z* is an approximate global solution.

Theorem 3.1. Ifn, > 0 for all k = 0,1,..., then the sequence {z"}
constructed by the Algorithm is a relaxation sequence, i.e,

FEY 2 f(F), k=0,1,....

The proof follows from Lemmas 2.3 and Lemma 3.1.
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4. Numerical Experiments

In order to implement the proposed algorithm, we consider the problem of the

following type:
Az, x) + (b,x) + k

2eh - (Cz,z) + (d,x) + e

where D ={z € R"| o; <x; < 3;, i =1,2,...,n}, k= 2000, e = 3000.
Elements of the approximation set are defined as:

yi:zk—i—ahi, i=1,2,...,m.

Where 2" is a local solution found by the conditional gradient method starting
from an arbitrary feasible point ¥ € D. Vectors h’ are generated randomly.
Parameter o can be found from the equation ¢(y?) = p(2*) in the following:

((p(")C — AN, %) + ((p(zM)C — A)2* + p(F)d — b — p(2F)e, ')
((p(F)C = At h?)

o =

The following problems have been solved numerically by the proposed al-
gorithm and in all cases the global solutions are found.

Problem 1. Let

a=(A3) e (0 4) = (1) = (5):

D:{—1SZL‘1S3, —2§$2§4}
Solution. z* = (—1,4), f(z*)=0,6970.
Problem 2. Let

1 -2 -1 2 1 3 3 2
S A R WS Rl Ui Al O

Dy ={1<x <3, 2< 2 <5, 1 <z <4}

Solution. z* = (1,5,4), f(z*) = 0,7190.

Dy={-1<2;<3,-2<2;<4,-1< 23 <5}

Solution. z* = (3,-2,5), f(z*) =0, 7255.
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Problem 3. Let

1 111 -2 1 1 2
1 211 1 -1 -1 =2
A= 113 1 |’ ¢ 1 -1 -3 1|7
1 11 4 2 =2 1 -9
2 1

D:{_2le SQ,—leQ§4,—1§x3§5,—3§x4§1}
Solution. z* = (2,4,5,1), f(z*)=0,7688.
Problem 4. Let

11111 2 1 1 2 1
12111 1 -1 -1 -2 -1
A=|11311], c= 1 -1 -3 1 1|,
11141 2 -2 1 -9 -2
11115 1 -1 1 —6 —4

b=(1,-8,-3, 2, 5, d= (-2, 2, 5,—6, 4),
D:{—Bgﬂfl§27_2§352§37_1§353§57_1§x4§4,_4§ﬂf5§1}7

Solution. z* = (2,3,4,1,6), f(z*) = 0,8666.
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