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Abstract: In this paper we investigate the existence and uniqueness for the
solution of the problem of determining the v = (vg,v1,v2) in the quasilinear
parabolic equation % > %[Ai(y, Vo) gfi] +>", Bi(y, vl)aa—i = f(x,t,v9).
For the objective functional Jg(v) = [s[y(¢.t) — fo(¢,t)]*d¢dt + 3 2 o lvm —
mei, it is proven that the problem has at least one solution for g > 0, and
has a unique solution for 5 > 0.
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1. Introduction

Optimal control problems for partial differential equations are currently of much
interest. A larage amount of the theoretical concept which governed by quasi-
linear parabolic equations [1-5] has been investigated in the field of optimal
control problems. These problems have dealt with the processes of hydro- and
gasdynamics, heatphysics, filtration, the physics of plasma and others [6-8].
The study and determination of the optimal regimes of heat conduction pro-
cesses at a long interval of the change of temperture gives rise to optimal control
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problems with respect to a quasilinear equation of parabolic type. In this work,
we consider a constrained optimal control problem with respect to a quasilin-
ear parabolic equation with controls in the coefficients of the equation. The
existence and uniqueness of the optimal control problem is proved.

2. Formulation of the Problem

Let D is a bounded domain of the N-dimensional Euclidean space Epn; I' be
the boundary of D, assumed to be sufficiently smooth; v is the exterior unit
normal of I'; "> 0 be a fixed time ; Q = D x (0,7] ; S =T x (0,77.

Now we consider a class of optimal control problems governed by the fol-
lowing quasilinear parabolic system.

L(v)y(z,t) = f(z,t,v2), (z,t) € Q,
y(x,O) = ¢(x)7x €D,

S iy, 00) 22 cos(v. )]s = 9(C, 1), (G,1) € S (1)

where ¢ € La(D), g((,t) € La(S) are given functions and the differential oper-
ator L takes the following form:

02 = 0 0z - 9z
L(v)z(x,t) = Fri Z %P\i(z’vo)&c-] + Z Bi(Z,m)am (2)
=1 " b=l '

y(z,t),v = (v, v1,v2) are the state and the controls rspectively for the system

(1).

Furthermore, we consider the functional of the form

2
Ta(w) = [ (G = fol¢. PGt +5 D om = o (3)
m=0

which is to minimized under condition (1) and additional restricitions

N
SN—

vo < Ni(y,vo) < po,vi < Bi(y,v1) < pp,m <ylz,t) <r,i=1n

on V = {v = (v0,v1,v2) : U = (Vom Vim, """ > Vim, ) € l2, [[vm |1y, < R, =
0,2 , Wy = (Wom,Wim, " sWim, ) € lo,m = 0,2 are given numbers ,5 >
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0,Rp >0, vj, 15, = 1,2,71, 79 are positive numbers and fo((,t) € Lo(95) is a
given function.
Throughout this paper, we adopt the following assumptions.
Assumption 2.1. V is closed and bonded subset of ls.
Assumption 2.2. The function f(z,t,v9) is given function continuous in
vy on Iy for almost all (x,t) € €2, bounded and measurable in z,¢ on 2 Yy € lo.
Assumption 2.3. The functions B;(y,v1), \i(y,v0),4 = 1, n are continuous
n (y,v) € [r1,r2] X lo have continuous derivatives in y at ¥(y,v) € [r1,72] X la

and S°t, S,
y Oy
Assumption 2.4. The functions B;(y,v1), \i(y,v0),7 = 1,n, f(z,t,vs) sat-
isfy a Lipschitz condition for vy, vy, v9 ,then

|B¢(y(:c,t),v1 + 5U1) - Bi(y(xvt)vvlﬂ < So(x,t)||57)1||12,i =1,

3

|)‘i(y(xat)77)0 + 5U0) - )\i(y($,t),vo)| < Sl(xvt)H&UOHlQ?i =1n

[f (@, 8,02 + 6va) — f (2,8, v2) < Sa(z,1)|6v2]|1,

for almost all (z,t) € Q,Yy € [r1,r2], Vo, Unm+0v,, € Iy such that ||vy, ||, ||vm+
SUm|li, < Ry where Sy, (2,t) € Loo,m = 0,2.

Assumption 2.5. The first derivatives of the functions B;(y, vo), \i(y, v0),7 =
1,n and f(z,t,ve) with respect to v are continuous functions in [ry, 7] x I3 and
for any v, € ly such that [|vp,||;, < Rm,m =0,2.

Definition 2.1. The problem of finding the function y = y(z,t) € Vy"' (Q)
from condition (1)-(2) at given v € V' is called the reduced problem.

Definition 2.2. A function y = y(z,t) € V,°(Q) is said to be a solution
of the problem (1)-(2), if for all n = n(x,t) € W211(Q) the equation

Jol=y G+ 311 iy, v0) g i + S0y Bilys vn) (5 )n(a, )

—f(x, t,v9)n(x, t)]dzdt = fD n(x,0)dz —i—fsg ¢, t)n(¢, t)d¢dt, (5)

is valid and n(z,T) = 0.

It is proved in [8] that, under the foregoing assumptions, a reduced problem
(1)-(2) has a unique solution and ‘86_431-‘ < C1,i = 1,n almost at all (z,t) €
Q. Vv € V, where (] is a certain constant.
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3. The Existence Theorem

Optimal control problems of the coefficients of differential equations do not
always have solution [9]. Examples in [10] and elswhere of problems of the
type (1)-(4) having no solution for § = 0. A problem of minimization of a
functional is said to be unstable, when a minimizing sequare does not converge
to an element minimizing the functional [6].

To begin with, we need

Theorem 3.1. Under the above assumptions for every solution of the
reduced problem (1)-(2) the following estimate is valid:

dy
16y [ly;10 <02||ZA/\ \|L29>+||Af ZAB HLQ(Q] (6)

where 6y(z,t) = y(x,t;v + 6v) — y(z, t;v), dy(z,t) € WQM(Q), AN = Ni(u,vo +
dvg) — Ni(u,v9) ,AB; = Bj(u,v1 + 6v1) — Bi(u,v1), Af = f(x,t,v9 + dvg) —
f(x,t,v9) and Cy > 0 is a constant not dependent on dv = (Jvg, dv1, dva), dvy, €
lg, m = 0, 2.

Proof. Set 8y(x,t) = y(x, v+ 60) — y(z, £;0),y = y(w, £:0), 7 = y(o, v +
dv). From (5) it follows that

86y on n OXi(y+01dy,v0+0v0) Oy On
f [ 6y ot + Zz 1 Z@acz &rz + Zz 1 dy ox; axi&y

dy & - 96y
+ 2 ANigl g + 2 Bigan + 200 1AB(3$Z)

+ 2?21 ﬁBi(y+92§;/,v1+5v1) %5977 _ Af’n]dxdt -0 (7)

n(xz,T) = 0.

for all n = n(z,t) € W21’1(Q) an
Here 61,65 € (0,1),i is some number, \; = \;(y + 6y, vo + dvp)
AN = Ny, vo + dvg) — Ny, B; = Bi(y + 6y,v1 + 6v1) ,AB; = B;(y,v1 +
dv1) — Ni(y,v1), Zzl,n i=1,n, Af = f(z,t,v2 + dva) — f(x,t,v2).
Let np(z,t) = % 7(z,7)dr,0 < h < 7 where 7 = 0y(x,t) at (z,t) € Qy,,
zero at t > t1(t1 < T ) and Q, = D x (0,¢1]. In identity (5) put n(z,t)
instead of n,(x,t), and follovvlng the method in [11,p. 166-168] we obtain

0.

N /98 ON; (y+01y,v0+9 Jdy 96
L [p(0y)2de + fo, [0 N(GL)2 + Yo OltigntOun) Ju G0y oy
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By 95 OB (y+026y,01+6 2
+ fﬂtl Do AN a:g axydxdt + 2 s+ 2@5 i tou) By (5y)2d:1:dt

o, Sty Bigioy + Jo, Siny ABi(§E)sydadt — [o, Afoydedt =0 (8)

Hence,from the above assumptions and applying Cauchy Bunyakoviskii in-
equality, we obtain

5 Lo Oy, )2 de + v fo, [0, S22 ddt
< (Ca+ Ca) ([, [S01) G Pdadt)2 (fo, (5y(a,t))*dwdt)?
n 1 n
o, [0 AN dedt}> (fo, [ Bu2dzdt)> + Cs Jo, Gy, t))*ddt

+ o HIpIAf = X0y ABi(FE)lda( [, dyda)}dt, (9)

where C3, Cy, C5 are positive constants not depending on §v.
Applying Cauchy’s inequality with € and combine similar terms, then mul-
tiply both sides by two, we obtain

2 ol
”5y($at1)”%2( 2l Dic1 axZZ”LQ(Qtl) < CG|’5y(x7t)H%2(Qtl)

n o
+,,—3){th1 Do) ANig [2dzdt}e + 2 th [Af =30 AB;(2 L)]dadt, (10)
where Cg is positive constant not depending on dv.

Now we replace [|0y(z, t)HLQ(Qt ) = = t1(y(t1))?. This gives us the inequality
(10) yields the two inequalities

v <G [ "y

2 Y 19 / 8
+ = Adi dzdt)z + | [Af =S ABj(=2)|dzdt] (11
YA Z paldodttt+ | Z L )jdzde] (1)
1
H ZZ 1 gii/HLQ(Qt ) — 2116()’6“(53/“142(915 {fﬂt Zz 1 A)\zﬁx ]2d$dt}2

+ Jo, [Af = iy ABi(%)]dadt] (12)
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From the known estimate [12,pp. 117-118] it follows that

y(t) < Cq[{ ZA)\ ay]dxdt}2—|—/ Af — ZAB
Qiq

Qtlzl

8% Y dwdt] (13)

where C7 is positive constant not depending on dv. Consequently,

max [|0yl|r,p) < C7l {/ ZA)\ y d:):dt}2

0<t<ty
tl i=1
dy
+/ [Af — ZAB ]dxdt] (14)
Qe

and

00 0
HZ o) _08{/ ZAA S dade)

Q=1

’L

dy
+/Qt1 Af — ZAB )dadt]z, (15)

where Cg is positive constant not depending on dv.
If we combine the last two estimates, this proves the estimate (6). This
completes the proof of the theorm.

Corollary 3.1. Under the above assumptions, the right part of estimate
(6) converges to zero at 32 _ ||0vl|;, — 0, therefore

2
16y lly 10y — 0 at > [lov], — 0. (16)
m=0
Hence from the theorem on trace, see [13], we get

2
16yl 2(2) = 0,18y llLa(s) = O at Y [[5vmlli, — 0. (17)

m=0
Now we consider the functional Jy(v) = [s[y — fo(¢, t))2dc¢dt.
Theorem 3.2. The functional Jo(v) is continuous on V.

Proof. Let dv = (dvg, dvy,0vs), dvy, € la,m = 0,2 be an increment of control
on an element v € V such that v+ dv € V. For the increment of Jy(v) we have
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AJdy(v) = Jo(v + dv) — Jp(v)
- / (G, 1) FolC, By (C. t)dCdt + / Sy(C,0)dcdt (18)
S S

Applying the Cauchy-Bunyakovskii inequality, we obtain

[AJo()] < 2lly(C,t) = fo(C, Lo 199(C Ol zas) + 189 T sy (19)
An application of the Corollary 3.1 completes the proof.
Theorem 3.3. For any 3 > 0 the problem (1)-(4) has a least one solution.

Proof. The set of V' is closed and bounded in lp. Since Jy(v) is continuous
on V by Theorem 3.2, so is

2
Ts() = Jo(v) + B8 Y l[vm — w7, (20)
m=0

Then from the Weierstrass theorem [14] it follows that the problem (1)-(4)
has a least one solution. This completes the proof of the theorm.

4. The Uniqueness Theorem

According to the above discussions, we ca easily obtain a theorem concerning
solution uniqueness for the considering optimal control problem (1)-(4).

Theorem 4.1. There exists a dense set K of ls such that for any w,, €
K,m = 0,2 the problem (1)-(4) for 3 > 0 has a unique solution.

Proof. The functional Jy(v) is bounded below, and the foreging establishes
that it is continues on V. Furthermore, [y is uniformaly convex [12]. It thus
follows from a theorm in [16] that the space Iy contains an everywhere-dense
subset K such that the problem (1)-(4) has a unque solution when w,, € K, m =
0,2 and 8 > 0. This completes the proof of the theorm.

5. Conclusion

We have investigated a constrained optimal control problems governed by quasi-
linear parabolic equations with controls in the coefficients of the equation. The
existence and uniqueness of the optimal control problem is proved.
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