International Journal of Pure and Applied Mathematics Volume 76 No. 2 2012, 157-165 ISSN: 1311-8080 (printed version) url: http://www.ijpam.eu

WELL-POSEDNESS OF A QUASILINEAR PARABOLIC OPTIMAL CONTROL PROBLEM

M.H. Farag^{1 §}, T.A. Talaat², E.M. Kamal³

Department of Mathematics Faculty of Science Minia University Minia, EGYPT

Abstract: In this paper we investigate the existence and uniqueness for the solution of the problem of determining the $v = (v_0, v_1, v_2)$ in the quasilinear parabolic equation $\frac{\partial y}{\partial t} - \sum_{i=1}^{n} \frac{\partial}{\partial x_i} [\lambda_i(y, v_0) \frac{\partial y}{\partial x_i}] + \sum_{i=1}^{n} B_i(y, v_1) \frac{\partial y}{\partial x_i} = f(x, t, v_2).$ For the objective functional $J_{\beta}(v) = \int_S [y(\zeta, t) - f_0(\zeta, t)]^2 d\zeta dt + \beta \sum_{m=0}^{2} ||v_m - \omega_m||_{l_2}^2$, it is proven that the problem has at least one solution for $\beta \ge 0$, and has a unique solution for $\beta > 0$.

AMS Subject Classification: 49J20, 49K20, 49M29, 49M30 **Key Words:** optimal control, quasilinear parabolic equation, existence and uniquness theorems

1. Introduction

Optimal control problems for partial differential equations are currently of much interest. A larage amount of the theoretical concept which governed by quasilinear parabolic equations [1-5] has been investigated in the field of optimal control problems. These problems have dealt with the processes of hydro- and gasdynamics, heatphysics, filtration, the physics of plasma and others [6-8]. The study and determination of the optimal regimes of heat conduction processes at a long interval of the change of temperture gives rise to optimal control

Received: June 2, 2011

© 2012 Academic Publications, Ltd. url: www.acadpubl.eu

[§]Correspondence author

problems with respect to a quasilinear equation of parabolic type. In this work, we consider a constrained optimal control problem with respect to a quasilinear parabolic equation with controls in the coefficients of the equation. The existence and uniqueness of the optimal control problem is proved.

2. Formulation of the Problem

Let D is a bounded domain of the N-dimensional Euclidean space E_N ; Γ be the boundary of D, assumed to be sufficiently smooth; ν is the exterior unit normal of Γ ; T > 0 be a fixed time ; $\Omega = D \times (0, T]$; $S = \Gamma \times (0, T]$.

Now we consider a class of optimal control problems governed by the following quasilinear parabolic system.

$$L(v)y(x,t) = f(x,t,v_2), (x,t) \in \Omega,$$
$$y(x,0) = \phi(x), x \in D,$$
$$\sum_{i=1}^{n} \lambda_i(y,v_0) \frac{\partial y}{\partial x_i} \cos(\nu, x_i)|_S = g(\zeta,t), (\zeta,t) \in S$$
(1)

where $\phi \in L_2(D), g(\zeta, t) \in L_2(S)$ are given functions and the differential operator L takes the following form:

$$L(v)z(x,t) = \frac{\partial z}{\partial t} - \sum_{i=1}^{n} \frac{\partial}{\partial x_i} [\lambda_i(z,v_0)\frac{\partial z}{\partial x_i}] + \sum_{i=1}^{n} B_i(z,v_1)\frac{\partial z}{\partial x_i}$$
(2)

 $y(x,t), v = (v_0, v_1, v_2)$ are the state and the controls respectively for the system (1).

Furthermore, we consider the functional of the form

$$J_{\beta}(v) = \int_{S} [y(\zeta, t) - f_0(\zeta, t)]^2 d\zeta dt + \beta \sum_{m=0}^{2} \|v_m - \omega_m\|_{l_2}^2,$$
(3)

which is to minimized under condition (1) and additional restrictions

$$\nu_0 \le \lambda_i(y, v_0) \le \mu_0, \nu_1 \le B_i(y, v_1) \le \mu_1, r_1 \le y(x, t) \le r_2, i = \overline{1, n}$$
(4)

 $\begin{array}{l} \text{on } V = \{v = (v_0, v_1, v_2) : v_m = (v_{0m}, v_{1m}, \cdots, v_{im}, \cdots) \in l_2, \|v_m\|_{l_2} \leq R_m, m = \overline{0, 2} \\ \overline{0, 2} \ , \ \omega_m = (\omega_{0m}, \omega_{1m}, \cdots, \omega_{im}, \cdots) \in l_2, m = \overline{0, 2} \ \text{are given numbers } , \beta \geq 0 \end{array}$

 $0, R_m > 0, \nu_j, \mu_j, j = 1, 2, r_1, r_2$ are positive numbers and $f_0(\zeta, t) \in L_2(S)$ is a given function.

Throughout this paper, we adopt the following assumptions.

Assumption 2.1. V is closed and bonded subset of l_2 .

Assumption 2.2. The function $f(x, t, v_2)$ is given function continuous in v_2 on l_2 for almost all $(x, t) \in \Omega$, bounded and measurable in x, t on $\Omega \forall v_2 \in l_2$.

Assumption 2.3. The functions $B_i(y, v_1), \lambda_i(y, v_0), i = \overline{1, n}$ are continuous on $(y, v) \in [r_1, r_2] \times l_2$ have continuous derivatives in y at $\forall (y, v) \in [r_1, r_2] \times l_2$ and $\frac{\partial B_i}{\partial y}, \frac{\partial \lambda_i}{\partial y}, i = \overline{1, n}$ are bounded.

Assumption 2.4. The functions $B_i(y, v_1), \lambda_i(y, v_0), i = \overline{1, n}, f(x, t, v_2)$ satisfy a Lipschitz condition for v_1, v_0, v_2 , then

$$|B_i(y(x,t), v_1 + \delta v_1) - B_i(y(x,t), v_1)| \le S_0(x,t) \|\delta v_1\|_{l_2}, i = \overline{1, n_1}$$

$$|\lambda_i(y(x,t), v_0 + \delta v_0) - \lambda_i(y(x,t), v_0)| \le S_1(x,t) \|\delta v_0\|_{l_2}, i = \overline{1, n}$$

$$|f(x,t,v_2+\delta v_2) - f(x,t,v_2)| \le S_2(x,t) \|\delta v_2\|_{l_2}$$

for almost all $(x,t) \in \Omega, \forall y \in [r_1, r_2], \forall v_m, v_m + \delta v_m \in l_2$ such that $||v_m||_{l_2}, ||v_m + \delta v_m||_{l_2} \leq R_m$ where $S_m(x,t) \in L_\infty, m = \overline{0, 2}$.

Assumption 2.5. The first derivatives of the functions $B_i(y, v_0), \lambda_i(y, v_0), i = \overline{1, n}$ and $f(x, t, v_2)$ with respect to v are continuous functions in $[r_1, r_2] \times l_2$ and for any $v_m \in l_2$ such that $||v_m||_{l_2} \leq R_m, m = \overline{0, 2}$.

Definition 2.1. The problem of finding the function $y = y(x,t) \in V_2^{0,1}(\Omega)$ from condition (1)-(2) at given $v \in V$ is called the reduced problem.

Definition 2.2. A function $y = y(x,t) \in V_2^{1,0}(\Omega)$ is said to be a solution of the problem (1)-(2), if for all $\eta = \eta(x,t) \in W_2^{1,1}(\Omega)$ the equation

$$\int_{\Omega} \left[-y \frac{\partial \eta}{\partial t} + \sum_{i=1}^{n} \lambda_i(y, v_0) \frac{\partial y}{\partial x_i} \frac{\partial \eta}{\partial x_i} + \sum_{i=1}^{n} B_i(y, v_1) (\frac{\partial y}{\partial x_i}) \eta(x, t) \right]$$
$$-f(x, t, v_2) \eta(x, t) dx dt = \int_D \phi(x) \eta(x, 0) dx + \int_S g(\zeta, t) \eta(\zeta, t) d\zeta dt, \quad (5)$$

is valid and $\eta(x,T) = 0$.

It is proved in [8] that, under the foregoing assumptions, a reduced problem (1)-(2) has a unique solution and $\left|\frac{\partial y}{\partial x_i}\right| \leq C_1, i = \overline{1, n}$ almost at all $(x, t) \in \Omega, \forall v \in V$, where C_1 is a certain constant.

3. The Existence Theorem

Optimal control problems of the coefficients of differential equations do not always have solution [9]. Examples in [10] and elswhere of problems of the type (1)-(4) having no solution for $\beta = 0$. A problem of minimization of a functional is said to be unstable, when a minimizing sequare does not converge to an element minimizing the functional [6].

To begin with, we need

Theorem 3.1. Under the above assumptions for every solution of the reduced problem (1)-(2) the following estimate is valid:

$$\|\delta y\|_{V_2^{1,0}(\Omega)} \le C_2[\|\sum_{i=1}^n \Delta \lambda_i \frac{\partial y}{\partial x_i}\|_{L_2(\Omega)} + \|\Delta f - \sum_{i=1}^n \Delta B_i \frac{\partial y}{\partial x_i}\|_{L_2(\Omega)}], \quad (6)$$

where $\delta y(x,t) = y(x,t;v+\delta v) - y(x,t;v), \delta y(x,t) \in W_2^{1,1}(\Omega), \ \Delta \lambda_i = \lambda_i(u,v_0+v_0)$ δv_0) - $\lambda_i(u, v_0)$, $\Delta B_i = B_i(u, v_1 + \delta v_1) - B_i(u, v_1)$, $\Delta f = f(x, t, v_2 + \delta v_2) - \delta v_0$ $f(x,t,v_2)$ and $C_2 \geq 0$ is a constant not dependent on $\delta v = (\delta v_0, \delta v_1, \delta v_2), \delta v_m \in$ $l_2, m = \overline{0, 2}.$

Proof. Set $\delta y(x,t) = y(x,t,v+\delta v) - y(x,t;v), y = y(x,t;v), \overline{y} = y(x,t;v+\delta v)$ δv). From (5) it follows that

$$\int_{\Omega} \left[-\delta y \frac{\partial \eta}{\partial t} + \sum_{i=1}^{n} \overline{\lambda_{i}} \frac{\partial \delta y}{\partial x_{i}} \frac{\partial \eta}{\partial x_{i}} + \sum_{i=1}^{n} \frac{\partial \lambda_{i} (y + \theta_{1} \delta y, v_{0} + \delta v_{0})}{\partial y} \frac{\partial y}{\partial x_{i}} \frac{\partial \eta}{\partial x_{i}} \delta y
+ \sum_{i=1}^{n} \Delta \lambda_{i} \frac{\partial y}{\partial x_{i}} \frac{\partial \eta}{\partial x_{i}} + \sum_{i=1}^{n} \overline{B_{i}} \frac{\partial \delta y}{\partial x_{i}} \eta + \sum_{i=1}^{n} \Delta B_{i} (\frac{\partial y}{\partial x_{i}}) \eta
+ \sum_{i=1}^{n} \frac{\partial B_{i} (y + \theta_{2} \delta y, v_{1} + \delta v_{1})}{\partial y} \frac{\partial y}{\partial x_{i}} \delta y \eta - \Delta f \eta \right] dx dt = 0$$
(7)

for all $\eta = \eta(x,t) \in W_2^{1,1}(\Omega)$ and $\eta(x,T) = 0$. Here $\theta_1, \theta_2 \in (0,1), i = \overline{1,n}$ is some number, $\overline{\lambda_i} \equiv \lambda_i(y + \delta y, v_0 + \delta v_0)$ $\Delta\lambda_i \equiv \lambda_i(y, v_0 + \delta v_0) - \lambda_i(y, v_0), \ \overline{B_i} \equiv B_i(y + \delta y, v_1 + \delta v_1), \ \Delta B_i \equiv B_i(y, v_1 + \delta v_1)$ $\delta v_1) - \lambda_i(y, v_1), i = \overline{1, n}, i = \overline{1, n}, \Delta f \equiv f(x, t, v_2 + \delta v_2) - f(x, t, v_2).$

Let $\eta_h(x,t) = \frac{1}{h} \int_{t-h}^t \overline{\eta}(x,\tau) d\tau, 0 < h < \tau$ where $\overline{\eta} = \delta y(x,t)$ at $(x,t) \in \Omega_{t_1}$, zero at $t > t_1(t_1 \leq T - h)$ and $\Omega_{t_1} = D \times (0, t_1]$. In identity (5) put $\eta(x, t)$ instead of $\eta_h(x,t)$, and following the method in [11,p. 166-168] we obtain

$$\frac{1}{2} \int_{D} (\delta y)^2 dx + \int_{\Omega_{t_1}} \left[\sum_{i=1}^n \overline{\lambda_i} (\frac{\partial \delta y}{\partial x_i})^2 + \sum_{i=1}^n \frac{\partial \lambda_i (y + \theta_1 \delta y, v_0 + \delta v_0)}{\partial y} \frac{\partial y}{\partial x_i} \frac{\partial \delta y}{\partial x_i} \delta y \right] dx dt$$

$$+\int_{\Omega_{t_1}} \sum_{i=1}^n \Delta \lambda_i \frac{\partial y}{\partial x_i} \frac{\partial \delta y}{\partial x_i} dx dt + \sum_{i=1}^n \frac{\partial B_i (y + \theta_2 \delta y, v_1 + \delta v_1)}{\partial y} \frac{\partial y}{\partial x_i} (\delta y)^2 dx dt$$
$$+\int_{\Omega_{t_1}} \sum_{i=1}^n \overline{B_i} \frac{\partial \delta y}{\partial x_i} \delta y + \int_{\Omega_{t_1}} \sum_{i=1}^n \Delta B_i (\frac{\partial y}{\partial x_i}) \delta y dx dt - \int_{\Omega_{t_1}} \Delta f \delta y dx dt = 0$$
(8)

Hence, from the above assumptions and applying Cauchy Bunyakoviskii inequality, we obtain

$$\frac{1}{2} \int_{D} (\delta y(x,t_{1})^{2} dx + \nu_{0} \int_{\Omega_{t_{1}}} [\sum_{i=1}^{n} \frac{\partial \delta y}{\partial x_{i}}]^{2} dx dt$$

$$\leq (C_{3} + C_{4}) (\int_{\Omega_{t_{1}}} [\sum_{i=1}^{n} \frac{\partial \delta y}{\partial x_{i}}]^{2} dx dt)^{\frac{1}{2}} (\int_{\Omega_{t_{1}}} (\delta y(x,t))^{2} dx dt)^{\frac{1}{2}}$$

$$+ \{\int_{\Omega_{t_{1}}} [\sum_{i=1}^{n} \Delta \lambda_{i} \frac{\partial y}{\partial x_{i}}]^{2} dx dt\}^{\frac{1}{2}} (\int_{\Omega_{t_{1}}} [\sum_{i=1}^{n} \frac{\partial \delta y}{\partial x_{i}}]^{2} dx dt)^{\frac{1}{2}} + C_{5} \int_{\Omega_{t_{1}}} (\delta y(x,t))^{2} dx dt$$

$$+ \int_{0}^{t_{1}} \{\int_{D} [\Delta f - \sum_{i=1}^{n} \Delta B_{i}(\frac{\partial y}{\partial x_{i}})] dx (\int_{D} \delta y dx)\} dt, \qquad (9)$$

where C_3, C_4, C_5 are positive constants not depending on δv .

Applying Cauchy's inequality with ε and combine similar terms, then multiply both sides by two, we obtain

$$\begin{aligned} \|\delta y(x,t_1)\|_{L_2(D)}^2 &+ \frac{\nu_0}{2} \|\sum_{i=1}^n \frac{\partial \delta y}{\partial x_i}\|_{L_2(\Omega_{t_1})}^2 \le C_6 \|\delta y(x,t)\|_{L_2(\Omega_{t_1})}^2 \\ &+ \frac{2}{\nu_0} \{\int_{\Omega_{t_1}} [\sum_{i=1}^n \Delta \lambda_i \frac{\partial y}{\partial x_i}]^2 dx dt \}^{\frac{1}{2}} + \frac{2}{\nu_0} \int_{\Omega_{t_1}} [\Delta f - \sum_{i=1}^n \Delta B_i(\frac{\partial y}{\partial x_i})] dx dt, (10) \end{aligned}$$

where C_6 is positive constant not depending on δv .

Now we replace $\|\delta y(x,t)\|_{L_2(\Omega_{t_1})}^2 = t_1(y(t_1))^2$. This gives us the inequality (10) yields the two inequalities

$$y(t_1) \leq C_6 \int_0^{t_1} y(t)dt + \frac{2}{\nu_0} \left[\left\{ \int_{\Omega_{t_1}} \left[\sum_{i=1}^n \Delta \lambda_i \frac{\partial y}{\partial x_i} \right]^2 dx dt \right\}^{\frac{1}{2}} + \int_{\Omega_{t_1}} \left[\Delta f - \sum_{i=1}^n \Delta B_i(\frac{\partial y}{\partial x_i}) \right] dx dt \right]$$
(11)

$$\begin{split} \|\sum_{i=1}^{n} \frac{\partial \delta y}{\partial x_{i}}\|_{L_{2}(\Omega_{t_{1}})}^{2} &\leq \frac{2C_{6}}{\nu_{0}} \|\delta y\|_{L_{2}(\Omega_{t_{1}})}^{2} + \frac{4}{\nu_{0}^{2}} [\{\int_{\Omega_{t_{1}}} [\sum_{i=1}^{n} \Delta \lambda_{i} \frac{\partial y}{\partial x_{i}}]^{2} dx dt\}^{\frac{1}{2}} \\ &+ \int_{\Omega_{t_{1}}} [\Delta f - \sum_{i=1}^{n} \Delta B_{i}(\frac{\partial y}{\partial x_{i}})] dx dt] \end{split}$$
(12)

From the known estimate [12,pp. 117-118] it follows that

$$y(t_1) \le C_7[\{\int_{\Omega_{t_1}} [\sum_{i=1}^n \Delta \lambda_i \frac{\partial y}{\partial x_i}]^2 dx dt\}^{\frac{1}{2}} + \int_{\Omega_{t_1}} [\Delta f - \sum_{i=1}^n \Delta B_i(\frac{\partial y}{\partial x_i})] dx dt] \quad (13)$$

where C_7 is positive constant not depending on δv . Consequently,

$$\max_{0 \le t \le t_1} \|\delta y\|_{L_2(D)} \le C_7 [\{\int_{\Omega_{t_1}} [\sum_{i=1}^n \Delta \lambda_i \frac{\partial y}{\partial x_i}]^2 dx dt\}^{\frac{1}{2}} + \int_{\Omega_{t_1}} [\Delta f - \sum_{i=1}^n \Delta B_i(\frac{\partial y}{\partial x_i})] dx dt]^{\frac{1}{2}}$$
(14)

and

$$\begin{split} \|\sum_{i=1}^{n} \frac{\partial \delta y}{\partial x_{i}}\|_{L_{2}(\Omega_{t_{1}})} &\leq C_{8}[\{\int_{\Omega_{t_{1}}} [\sum_{i=1}^{n} \Delta \lambda_{i} \frac{\partial y}{\partial x_{i}}]^{2} dx dt\}^{\frac{1}{2}} \\ &+ \int_{\Omega_{t_{1}}} [\Delta f - \sum_{i=1}^{n} \Delta B_{i}(\frac{\partial y}{\partial x_{i}})] dx dt]^{\frac{1}{2}}, \end{split}$$
(15)

where C_8 is positive constant not depending on δv .

If we combine the last two estimates, this proves the estimate (6). This completes the proof of the theorm.

Corollary 3.1. Under the above assumptions, the right part of estimate (6) converges to zero at $\sum_{m=0}^{2} \|\delta v\|_{l_2} \to 0$, therefore

$$\|\delta y\|_{V_2^{1,0}(\Omega)} \to 0 \quad at \quad \sum_{m=0}^2 \|\delta v\|_{l_2} \to 0.$$
 (16)

Hence from the theorem on trace, see [13], we get

$$\|\delta y\|_{L_2(\Omega)} \to 0, \|\delta y\|_{L_2(S)} \to 0 \text{ at } \sum_{m=0}^2 \|\delta v_m\|_{l_2} \to 0.$$
 (17)

Now we consider the functional $J_0(v) = \int_S [y(\zeta, t) - f_0(\zeta, t)]^2 d\zeta dt$.

Theorem 3.2. The functional $J_0(v)$ is continuous on V.

Proof. Let $\delta v = (\delta v_0, \delta v_1, \delta v_2), \delta v_m \in l_2, m = \overline{0, 2}$ be an increment of control on an element $v \in V$ such that $v + \delta v \in V$. For the increment of $J_0(v)$ we have

$$\Delta J_0(v) = J_0(v + \delta v) - J_0(v)$$

= $2 \int_S [y(\zeta, t) f_0(\zeta, t)] \delta y(\zeta, t) d\zeta dt + \int_S \delta y(\zeta, t) d\zeta dt$ (18)

Applying the Cauchy-Bunyakovskii inequality, we obtain

$$|\Delta J_0(v)| \le 2||y(\zeta, t) - f_0(\zeta, t)||_{L_2(S)} ||\delta y(\zeta, t)||_{L_2(S)} + ||\delta y(\zeta, t)||^2_{L_2(S)}$$
(19)

An application of the Corollary 3.1 completes the proof.

Theorem 3.3. For any $\beta \ge 0$ the problem (1)-(4) has a least one solution.

Proof. The set of V is closed and bounded in l_2 . Since $J_0(v)$ is continuous on V by Theorem 3.2, so is

$$J_{\beta}(v) = J_0(v) + \beta \sum_{m=0}^{2} \|v_m - w_m\|_{l_2}^2.$$
 (20)

Then from the Weierstrass theorem [14] it follows that the problem (1)-(4) has a least one solution. This completes the proof of the theorm.

4. The Uniqueness Theorem

According to the above discussions, we calculate a theorem concerning solution uniqueness for the considering optimal control problem (1)-(4).

Theorem 4.1. There exists a dense set K of l_2 such that for any $\omega_m \in K, m = \overline{0,2}$ the problem (1)-(4) for $\beta > 0$ has a unique solution.

Proof. The functional $J_0(v)$ is bounded below, and the foreging establishes that it is continues on V. Furthermore, l_2 is uniformaly convex [12]. It thus follows from a theorm in [16] that the space l_2 contains an everywhere-dense subset K such that the problem (1)-(4) has a unque solution when $\omega_m \in K, m = \overline{0,2}$ and $\beta > 0$. This completes the proof of the theorm.

5. Conclusion

We have investigated a constrained optimal control problems governed by quasilinear parabolic equations with controls in the coefficients of the equation. The existence and uniqueness of the optimal control problem is proved.

163

Acknowledgments

The second author is very grateful to Professor M.H. Farag for his fruitful advice during this work, and also to the referee for his valiable comments.

References

- Li Chun-Fa, Xue Yang, En-Min Feng, Optimal control problem governed by semilinear parabolic equation and its algorithm, *Acta Math. Sinica*, 186 (2008), 29-40.
- [2] D.A. Lashin, On the existence of optimal control of temperature regimes, J. of Math. Sciences, 158, No. 2 (2009).
- [3] I. Chryssoverghi, Mixed discretization-optimization methods for relaxed optimal control of nonlinear parabolic systems, In: *Proc. of 6-th WSEAS*, Lishbon (2006), 22-41.
- [4] M.H. Farag, On the derivation of discrete conjugate boundary value problem for an optimal control parabolic problem, New Zeal J. of Maths, 32 (2003), 21-31.
- [5] T.B. Gardashov, Solution of inverse problems for the quasilinear heat conduction equation for the multidimensional case, J. Engrg. Phys., 61, No. 3 (1991), 472-478.
- [6] A.D. Iskenderov, R.K. Tagiev, Optimization problems with controls in coefficients of parabolic equations, *Differentsialnye Uravneniya*, 19, No. 8 (1983), 1324-1334.
- [7] M.H. Farag, A stability theorem for constrained optimal control problems, Journal of Computational Mathematics, 22, No. 5 (2006), 635-640.
- [8] M.H. Farag, Computing optimal control with a quasilinear parabolic partial differential equation, Surveys in Mathematics and its Applications, 23 (2009), 34-44.
- [9] A.N. Tikhonov, N.Ya. Arsenin, Methods for the Solution of Incorrectly Posed Problems, Nauka, Moscow, Russian (1974).
- [10] F. Murat, Contre-examples pour dives problems ou le controle intervient dans les coefficients, Ann. Mat. Pure Appl., 112 (1977), 49-68.

- [11] O.A. Ladyzhenskaya, V.A. Solonnikov, N.N. Ural'tseva, Linear and Quasilinear Parabolic Equations, Nauka, Moscow, Russian (1976).
- [12] O.A. Ladyzhenskaya, Boundary Value Problems of Mathematical Physics, Nauka, Moscow, Russian (1973).
- [13] V.P. Mikhailov, Partial Differential Equations, Nauka, Moscow, Russian (1983).
- [14] W. Krabs, Optimization and Approximation, Wiley, New York (1979).
- [15] K. Yosida, Functional Analysis, Mir, Moscow (1967).
- [16] M. Goebel, On existence of optimal control, Math. Nuchr., 93 (1979), 67-73.