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Abstract: In this paper we investigate the existence and uniqueness for the
solution of the problem of determining the v = (v0, v1, v2) in the quasilinear
parabolic equation ∂y

∂t
−
∑n

i=1
∂
∂xi

[λi(y, v0)
∂y
∂xi

]+
∑n

i=1 Bi(y, v1)
∂y
∂xi

= f(x, t, v2).

For the objective functional Jβ(v) =
∫
S
[y(ζ, t)− f0(ζ, t)]

2dζdt+ β
∑2

m=0 ‖vm −
ωm‖2l2 , it is proven that the problem has at least one solution for β ≥ 0, and
has a unique solution for β > 0.
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1. Introduction

Optimal control problems for partial differential equations are currently of much
interest. A larage amount of the theoretical concept which governed by quasi-
linear parabolic equations [1-5] has been investigated in the field of optimal
control problems. These problems have dealt with the processes of hydro- and
gasdynamics, heatphysics, filtration, the physics of plasma and others [6-8].
The study and determination of the optimal regimes of heat conduction pro-
cesses at a long interval of the change of temperture gives rise to optimal control
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problems with respect to a quasilinear equation of parabolic type. In this work,
we consider a constrained optimal control problem with respect to a quasilin-
ear parabolic equation with controls in the coefficients of the equation. The
existence and uniqueness of the optimal control problem is proved.

2. Formulation of the Problem

Let D is a bounded domain of the N-dimensional Euclidean space EN ; Γ be
the boundary of D, assumed to be sufficiently smooth; ν is the exterior unit
normal of Γ; T > 0 be a fixed time ; Ω = D × (0, T ] ; S = Γ× (0, T ].

Now we consider a class of optimal control problems governed by the fol-
lowing quasilinear parabolic system.

L(v)y(x, t) = f(x, t, v2), (x, t) ∈ Ω,

y(x, 0) = φ(x), x ∈ D,

∑n
i=1 λi(y, v0)

∂y
∂xi

cos(ν, xi)|S = g(ζ, t), (ζ, t) ∈ S (1)

where φ ∈ L2(D), g(ζ, t) ∈ L2(S) are given functions and the differential oper-
ator L takes the following form:

L(v)z(x, t) =
∂z

∂t
−

n∑
i=1

∂

∂xi
[λi(z, v0)

∂z

∂xi
] +

n∑
i=1

Bi(z, v1)
∂z

∂xi
(2)

y(x, t), v = (v0, v1, v2) are the state and the controls rspectively for the system
(1).

Furthermore, we consider the functional of the form

Jβ(v) =

∫
S

[y(ζ, t)− f0(ζ, t)]
2dζdt+ β

2∑
m=0

‖vm − ωm‖2l2 , (3)

which is to minimized under condition (1) and additional restricitions

ν0 ≤ λi(y, v0) ≤ µ0, ν1 ≤ Bi(y, v1) ≤ µ1, r1 ≤ y(x, t) ≤ r2, i = 1, n (4)

on V = {v = (v0, v1, v2) : vm = (v0m, v1m, · · · , vim, · · · ) ∈ l2, ‖vm‖l2 ≤ Rm,m =
0, 2 , ωm = (ω0m, ω1m, · · · , ωim, · · · ) ∈ l2,m = 0, 2 are given numbers ,β ≥
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0, Rm > 0, νj, µj , j = 1, 2, r1, r2 are positive numbers and f0(ζ, t) ∈ L2(S) is a
given function.

Throughout this paper, we adopt the following assumptions.

Assumption 2.1. V is closed and bonded subset of l2.

Assumption 2.2. The function f(x, t, v2) is given function continuous in
v2 on l2 for almost all (x, t) ∈ Ω, bounded and measurable in x, t on Ω ∀v2 ∈ l2.

Assumption 2.3. The functions Bi(y, v1), λi(y, v0), i = 1, n are continuous
on (y, v) ∈ [r1, r2]× l2 have continuous derivatives in y at ∀(y, v) ∈ [r1, r2]× l2
and ∂Bi

∂y
, ∂λi

∂y
, i = 1, nare bounded.

Assumption 2.4. The functions Bi(y, v1), λi(y, v0), i = 1, n, f(x, t, v2) sat-
isfy a Lipschitz condition for v1, v0, v2 ,then

|Bi(y(x, t), v1 + δv1)−Bi(y(x, t), v1)| ≤ S0(x, t)‖δv1‖l2 , i = 1, n

|λi(y(x, t), v0 + δv0)− λi(y(x, t), v0)| ≤ S1(x, t)‖δv0‖l2 , i = 1, n

|f(x, t, v2 + δv2)− f(x, t, v2)| ≤ S2(x, t)‖δv2‖l2

for almost all (x, t) ∈ Ω,∀y ∈ [r1, r2],∀vm, vm+δvm ∈ l2 such that ‖vm‖l2 , ‖vm+
δvm‖l2 ≤ Rm where Sm(x, t) ∈ L∞,m = 0, 2.

Assumption 2.5. The first derivatives of the functionsBi(y, v0), λi(y, v0), i =
1, n and f(x, t, v2) with respect to v are continuous functions in [r1, r2]× l2 and
for any vm ∈ l2 such that ‖vm‖l2 ≤ Rm,m = 0, 2.

Definition 2.1. The problem of finding the function y = y(x, t) ∈ V
0,1
2 (Ω)

from condition (1)-(2) at given v ∈ V is called the reduced problem.

Definition 2.2. A function y = y(x, t) ∈ V
1,0
2 (Ω) is said to be a solution

of the problem (1)-(2), if for all η = η(x, t) ∈ W
1,1
2 (Ω) the equation

∫
Ω[−y ∂η

∂t
+

∑n
i=1 λi(y, v0)

∂y
∂xi

∂η
∂xi

+
∑n

i=1 Bi(y, v1)(
∂y
∂xi

)η(x, t)

−f(x, t, v2)η(x, t)]dxdt =
∫
D
φ(x)η(x, 0)dx +

∫
S
g(ζ, t)η(ζ, t)dζdt, (5)

is valid and η(x, T ) = 0.

It is proved in [8] that, under the foregoing assumptions, a reduced problem
(1)-(2) has a unique solution and | ∂y

∂xi
| ≤ C1, i = 1, n almost at all (x, t) ∈

Ω,∀v ∈ V, where C1 is a certain constant.
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3. The Existence Theorem

Optimal control problems of the coefficients of differential equations do not
always have solution [9]. Examples in [10] and elswhere of problems of the
type (1)-(4) having no solution for β = 0. A problem of minimization of a
functional is said to be unstable, when a minimizing sequare does not converge
to an element minimizing the functional [6].

To begin with, we need

Theorem 3.1. Under the above assumptions for every solution of the
reduced problem (1)-(2) the following estimate is valid:

‖δy‖
V

1,0

2
(Ω)

≤ C2[‖
n∑

i=1

∆λi
∂y

∂xi
‖L2(Ω) + ‖∆f −

n∑
i=1

∆Bi
∂y

∂xi
‖L2(Ω)], (6)

where δy(x, t) = y(x, t; v + δv)− y(x, t; v), δy(x, t) ∈ W
1,1
2 (Ω), ∆λi = λi(u, v0 +

δv0) − λi(u, v0) ,∆Bi = Bi(u, v1 + δv1) − Bi(u, v1), ∆f = f(x, t, v2 + δv2) −
f(x, t, v2) and C2 ≥ 0 is a constant not dependent on δv = (δv0, δv1, δv2), δvm ∈
l2,m = 0, 2.

Proof. Set δy(x, t) = y(x, t, v + δv) − y(x, t; v), y = y(x, t; v), y = y(x, t; v +
δv). From (5) it follows that

∫
Ω[−δy ∂η

∂t
+

∑n
i=1 λi

∂δy
∂xi

∂η
∂xi

+
∑n

i=1
∂λi(y+θ1δy,v0+δv0)

∂y
∂y
∂xi

∂η
∂xi

δy

+
∑n

i=1∆λi
∂y
∂xi

∂η
∂xi

+
∑n

i=1 Bi
∂δy
∂xi

η +
∑n

i=1 ∆Bi(
∂y
∂xi

)η

+
∑n

i=1
∂Bi(y+θ2δy,v1+δv1)

∂y
∂y
∂xi

δyη −∆fη]dxdt = 0 (7)

for all η = η(x, t) ∈ W
1,1
2 (Ω) and η(x, T ) = 0.

Here θ1, θ2 ∈ (0, 1), i = 1, n is some number, λi ≡ λi(y + δy, v0 + δv0)
,∆λi ≡ λi(y, v0 + δv0)− λi(y, v0), Bi ≡ Bi(y + δy, v1 + δv1) ,∆Bi ≡ Bi(y, v1 +
δv1)− λi(y, v1), i = 1, n, i = 1, n, ∆f ≡ f(x, t, v2 + δv2)− f(x, t, v2).

Let ηh(x, t) =
1
h

∫ t

t−h
η(x, τ)dτ, 0 < h < τ where η = δy(x, t) at (x, t) ∈ Ωt1 ,

zero at t > t1(t1 ≤ T − h) and Ωt1 = D × (0, t1]. In identity (5) put η(x, t)
instead of ηh(x, t), and following the method in [11,p. 166-168] we obtain

1
2

∫
D
(δy)2dx+

∫
Ωt1

[
∑n

i=1 λi(
∂δy
∂xi

)2 +
∑n

i=1
∂λi(y+θ1δy,v0+δv0)

∂y
∂y
∂xi

∂δy
∂xi

δy]dxdt
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+
∫
Ωt1

∑n
i=1∆λi

∂y
∂xi

∂δy
∂xi

dxdt+
∑n

i=1
∂Bi(y+θ2δy,v1+δv1)

∂y
∂y
∂xi

(δy)2dxdt

+
∫
Ωt1

∑n
i=1 Bi

∂δy
∂xi

δy +
∫
Ωt1

∑n
i=1 ∆Bi(

∂y
∂xi

)δydxdt −
∫
Ωt1

∆fδydxdt = 0 (8)

Hence,from the above assumptions and applying Cauchy Bunyakoviskii in-
equality, we obtain

1
2

∫
D
(δy(x, t1)

2dx+ ν0
∫
Ωt1

[
∑n

i=1
∂δy
∂xi

]2dxdt

≤ (C3 + C4)(
∫
Ωt1

[
∑n

i=1
∂δy
∂xi

]2dxdt)
1

2 (
∫
Ωt1

(δy(x, t))2dxdt)
1

2

+{
∫
Ωt1

[
∑n

i=1∆λi
∂y
∂xi

]2dxdt}
1

2 (
∫
Ωt1

[
∑n

i=1
∂δy
∂xi

]2dxdt)
1

2 + C5

∫
Ωt1

(δy(x, t))2dxdt

+
∫ t1
0 {

∫
D
[∆f −

∑n
i=1 ∆Bi(

∂y
∂xi

)]dx(
∫
D
δydx)}dt, (9)

where C3, C4, C5 are positive constants not depending on δv.

Applying Cauchy’s inequality with ε and combine similar terms, then mul-
tiply both sides by two, we obtain

‖δy(x, t1)‖
2
L2(D) +

ν0
2 ‖

∑n
i=1

∂δy
∂xi

‖2
L2(Ωt1

) ≤ C6‖δy(x, t)‖
2
L2(Ωt1

)

+ 2
ν0
{
∫
Ωt1

[
∑n

i=1 ∆λi
∂y
∂xi

]2dxdt}
1

2 + 2
ν0

∫
Ωt1

[∆f −
∑n

i=1 ∆Bi(
∂y
∂xi

)]dxdt, (10)

where C6 is positive constant not depending on δv.

Now we replace ‖δy(x, t)‖2
L2(Ωt1

) = t1(y(t1))
2. This gives us the inequality

(10) yields the two inequalities

y(t1) ≤ C6

∫ t1

0
y(t)dt

+
2

ν0
[{

∫
Ωt1

[
n∑

i=1

∆λi
∂y

∂xi
]2dxdt}

1

2 +

∫
Ωt1

[∆f −
n∑

i=1

∆Bi(
∂y

∂xi
)]dxdt] (11)

‖
∑n

i=1
∂δy
∂xi

‖2
L2(Ωt1

) ≤
2C6

ν0
‖δy‖2

L2(Ωt1
) +

4
ν2
0

[{
∫
Ωt1

[
∑n

i=1 ∆λi
∂y
∂xi

]2dxdt}
1

2

+
∫
Ωt1

[∆f −
∑n

i=1 ∆Bi(
∂y
∂xi

)]dxdt] (12)
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From the known estimate [12,pp. 117-118] it follows that

y(t1) ≤ C7[{

∫
Ωt1

[
n∑

i=1

∆λi
∂y

∂xi
]2dxdt}

1

2 +

∫
Ωt1

[∆f −
n∑

i=1

∆Bi(
∂y

∂xi
)]dxdt] (13)

where C7 is positive constant not depending on δv. Consequently,

max
0≤t≤t1

‖δy‖L2(D) ≤ C7[{

∫
Ωt1

[

n∑
i=1

∆λi
∂y

∂xi
]2dxdt}

1

2

+

∫
Ωt1

[∆f −

n∑
i=1

∆Bi(
∂y

∂xi
)]dxdt]

1

2 (14)

and

‖
n∑

i=1

∂δy

∂xi
‖L2(Ωt1

) ≤ C8[{

∫
Ωt1

[
n∑

i=1

∆λi
∂y

∂xi
]2dxdt}

1

2

+

∫
Ωt1

[∆f −
n∑

i=1

∆Bi(
∂y

∂xi
)]dxdt]

1

2 , (15)

where C8 is positive constant not depending on δv.

If we combine the last two estimates, this proves the estimate (6). This
completes the proof of the theorm.

Corollary 3.1. Under the above assumptions, the right part of estimate
(6) converges to zero at

∑2
m=0 ‖δv‖l2 → 0, therefore

‖δy‖
V

1,0

2
(Ω)

→ 0 at
2∑

m=0

‖δv‖l2 → 0. (16)

Hence from the theorem on trace, see [13], we get

‖δy‖L2(Ω) → 0, ‖δy‖L2(S) → 0 at

2∑
m=0

‖δvm‖l2 → 0. (17)

Now we consider the functional J0(v) =
∫
S
[y(ζ, t)− f0(ζ, t)]

2dζdt.

Theorem 3.2. The functional J0(v) is continuous on V.

Proof. Let δv = (δv0, δv1, δv2), δvm ∈ l2,m = 0, 2 be an increment of control
on an element v ∈ V such that v + δv ∈ V. For the increment of J0(v) we have
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∆J0(v) = J0(v + δv) − J0(v)

= 2

∫
S

[y(ζ, t)f0(ζ, t)]δy(ζ, t)dζdt +

∫
S

δy(ζ, t)dζdt (18)

Applying the Cauchy-Bunyakovskii inequality, we obtain

|∆J0(v)| ≤ 2‖y(ζ, t)− f0(ζ, t)‖L2(S)‖δy(ζ, t)‖L2(S) + ‖δy(ζ, t)‖2L2(S)
(19)

An application of the Corollary 3.1 completes the proof.

Theorem 3.3. For any β ≥ 0 the problem (1)-(4) has a least one solution.

Proof. The set of V is closed and bounded in l2. Since J0(v) is continuous
on V by Theorem 3.2, so is

Jβ(v) = J0(v) + β

2∑
m=0

‖vm − wm‖2l2 . (20)

Then from the Weierstrass theorem [14] it follows that the problem (1)-(4)
has a least one solution. This completes the proof of the theorm.

4. The Uniqueness Theorem

According to the above discussions, we ca easily obtain a theorem concerning
solution uniqueness for the considering optimal control problem (1)-(4).

Theorem 4.1. There exists a dense set K of l2 such that for any ωm ∈
K,m = 0, 2 the problem (1)-(4) for β > 0 has a unique solution.

Proof. The functional J0(v) is bounded below, and the foreging establishes
that it is continues on V . Furthermore, l2 is uniformaly convex [12]. It thus
follows from a theorm in [16] that the space l2 contains an everywhere-dense
subsetK such that the problem (1)-(4) has a unque solution when ωm ∈ K,m =
0, 2 and β > 0. This completes the proof of the theorm.

5. Conclusion

We have investigated a constrained optimal control problems governed by quasi-
linear parabolic equations with controls in the coefficients of the equation. The
existence and uniqueness of the optimal control problem is proved.
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