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Abstract: In this paper, we obtain some oscillation theorems for fourth order
nonlinear dynamic equations on time scales with and without neutral term.
Some examples illustrating the main results are given.
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1. Introduction

The theory of time scales which has recently received a lot of attention was
introduced by Stefan Hilger in his Ph.D thesis in 1988. Several authors have
expounded on various aspects of this new theory and for more details about the
theory of time scale calculus, see for example [3, 4]. In recent years there has
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been much research activity concerning the oscillatory behavior of solutions of
first,second and third order dynamic equations on time scales, see [1, 2, 3, 4,
5, 6, 10, 12] and the reference cited therein. To best of our knowledge there is
no paper dealt with the oscillatory behavior of fourth order dynamic equations
on time scales. This motivated us to consider the oscillation of fourth order
nonlinear dynamic equations of the form

(a(t)(b(t)x∆(t))∆)∆
2

+ f(t, xσ(t)) = 0, (1.1)

and
(a(t)(b(t)(x(t) + p(t)x(t− δ))∆)∆)∆

2

+ f(t, xσ(t− δ)) = 0 (1.2)

on a time scale interval [t0,+∞)T = {t ∈ T, t ≥ t0 > 0}. Throughout this paper
we use the notation x∆

n

in place of n times ∆−derivative of the function x(t).
The following conditions are assumed to hold without further mention:

(C1) a, b and p are positive real valued right-dense continuous functions on T;

(C2) τ and δ are positive real numbers;

(C3) f : [t0,∞)T × R → R is continuous with sgn f(t, u) = sgn u, and f(t, u)
is nondecreasing in u for each fixed t in [t0,∞)T.

By a solution of equation (1.1) (or( 1.2)), we mean a nontrivial real valued
function x satisfying equation (1.1) (or( 1.2)) for t ≥ tx for some tx ≥ t0.
A solution x of equation (1.1) (or( 1.2)) is called oscillatory if it is neither
eventually positive nor eventually negative; otherwise it is called nonoscillatory.
Our attention is restricted on those solutions x of equation (1.1) (or( 1.2)) which
exist on some half-line [tx,∞)T with sup{|x(t)| : t ∈ [t,∞)T} > 0 for every
t ≥ tx.

The paper is organized as follows: In the Section 2 we study the oscillatory
behavior of strongly sublinear and super linear fourth order dynamic equations
(1.1). In Section 3 we establish some oscillation criteria for fourth order neu-
tral dynamic equation (1.2) using Riccati transformation technique. Examples
illustrating the main results are given.

2. Oscillation Theorems of Equation (1.1)

In this section, we present some oscillation theorems for the equation (1.1) when
the function f is either superlinear or sublinear. We begin with the following
formula.
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We shall employ the following formula which is a simple consequence of the
Keller’s Chain rule (page 32 Theorem 1.90 in [3]): For any real β > 0

((x(t))β)∆ = βx∆(t)

∫ 1

0
[hxσ + (1− h)x]β−1dh, (2.1)

where x(t) is delta differentiable and eventually positive or eventually negative
function.

Definition 2.1. The function f(t, u) is said to be strongly superlinear if
there exists a constant α > 1 such that for u ≥ v > 0 or u ≤ v < 0,

f(t, u)

|u|αsgnu
≥

f(t, v)

|v|αsgnv
, t ∈ [t0,∞)T.

The equation (1.1) is called strongly superlinear equation if the function
f(t, u) is strongly superlinear.

The function f(t, u) is said to be strongly sublinear if there exists a constant
β with 0 < β < 1 such that for u ≥ v > 0 or u ≤ v < 0,

f(t, u)

|u|βsgnu
≥

f(t, v)

|v|βsgnv
, t ∈ [t0,∞)T.

The equation (1.1) is called strongly sublinear equation if the function f(t, u)
is strongly sublinear.

Lemma 2.2. Assume that either
∫ ∞

t0

1

a(t)
∆t =

∫ ∞

t0

1

b(t)
∆t = ∞, (2.2)

∫ ∞

t0

t

a(t)
∆t = ∞ and 0 < m ≤ b(t) ≤ M, (2.3)

or
∫ ∞

t0

P (t)

a(t)
∆t =

∫ t

t0

s

a(s)
∆s = ∞ where P (t) =

∫ σ(t)

t0

1

b(s)
∆s → ∞ as t → ∞.

(2.4)
If x(t) is an eventually positive solution of equation (1.1), then there are only
the following two cases for t large enough

Case (I) : x∆(t) > 0, (b(t)x∆(t))∆ > 0, (a(t)(b(t)x∆(t))∆)∆ > 0;

Case (II): x∆(t) > 0, (b(t)x∆(t))∆ < 0, (a(t)(b(t)x∆(t))∆)∆ > 0.
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Proof. Let x(t) be an eventually positive solution of equation (1.1). Then
there exists a t1 ∈ [t0,∞)T such that x(t) > 0 for all t ∈ [t1,∞)T. From the
equation (1.1) we have

(a(t)(b(t)x∆(t))∆)∆
2

< 0

for all t ∈ [t1,∞)T. So (a(t)(b(t)x∆(t))∆)∆, a(t)(b(t)x∆(t))∆ and b(t)x∆(t) are
eventually monotonic and of one sign, say for all t ∈ [t2,∞)T.
Suppose that (a(t3)(b(t3)x

∆(t3))
∆)∆ = −c1 ≤ 0 for some t3 ∈ [t2,∞)T. Note

that f(t, .) 6= 0, we assume that c1 6= 0. It follows that

(a(t)(b(t)x∆(t))∆)∆ ≤ −c1 (2.5)

for all t ∈ [t3,∞)T. Now integrating (2.5) from t3 to t both sides, we see that
there exists c2 > 0 such that

(b(t)x∆(t))∆ ≤ −c2
t

a(t)

for all t ∈ [t3,∞)T. Again integrating the last inequality, we obtain

b(t)x∆(t) ≤ b(t3)x
∆(t3)− c2

∫ t

t3

s

a(s)
∆s.

If (2.2) holds, then there exists t4 ∈ [t3,∞)T and c3 > 0 such that b(t)x∆(t) ≤
−c3 for all t ∈ [t4,∞)T. A final integration yields

x(t) ≤ x(t4)− c3

∫ t

t4

1

b(s)
∆s.

In view of condition (2.2), we obtain limt→∞ x(t) = −∞. This contradiction
implies that (a(t)(b(t)x∆(t))∆)∆ > 0 for all t ∈ [t1,∞)T.

Now if a(t)(b(t)x∆(t))∆ > 0 for t ∈ [t4,∞)T. There exists t5 ∈ T with
t5 ≥ t4 such that

a(t)(b(t)x∆(t))∆ > 0

for t ∈ [t5,∞)T. Since (a(t)(b(t)x∆(t))∆)∆ > 0, we have

a(t)(b(t)x∆(t))∆ ≥ a(t5)(b(t5)x
∆(t5))

∆ = c4 > 0 (2.6)

for t ∈ [t5,∞)T. If (2.2) holds, divide the last inequality by a(t) and integrate
from t5 to t to obtain

b(t)x∆(t)− b(t2)x
∆(t2) > c4

∫ t

t2

1

a(s)
∆s → ∞
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as t → ∞. Hence x∆(t) is eventually positive. If (2.3) holds, we multiply (2.6)
by t

a(t) and integrate from t5 to t to obtain

tb(t)x∆(t)− t5b(t5)x
∆(t5)−

∫ t

t5

(b(s)(x∆(s)))σ∆s > c4

∫ t

t5

s

a(s)
∆s.

If x∆(t) < 0 for all t ∈ [t5,∞)T, then

tb(t)x∆(t)− t5b(t5)x
∆(t5)−M(x(σ(t)) − x(σ(t5))) > c4

∫ t

t5

s

a(s)
∆s.

So as t → ∞

tb(t)x∆(t)− t5b(t5)x
∆(t5) +Mx(σ(t5)) > c4

∫ t

t5

s

a(s)
∆s → ∞.

Hence x∆(t) is eventually positive.
If (2.4) holds, multiplying (2.6) by P (t)/a(t) and integrating from t5 to t,

we have

P (t)b(t)x∆(t)− P (t5)b(t5)x
∆(t5)−

∫ t

t5

(b(s)x∆(s))σP∆(s)∆s > c4

∫ t

t5

P (s)

a(s)
∆s.

(2.7)
Since P∆(t) = 1

b(σ(t)) , we have from (2.7) that

P (t)b(t)x∆(t)− P (t5)b(t5)x
∆(t5) + x(σ(t5)) > c4

∫ t

t5

P (s)

a(s)
∆s → ∞

as t → ∞. Therefore x∆(t) is eventually positive and the proof of Case (I) is
complete.

Next if a(t)(b(t)x∆(t))∆ < 0 for t ∈ [t6,∞)T for some t6 ≥ t4, then b(t)x∆(t)
must be eventually positive since

∫∞

t0
1

b(t)∆t = ∞. Thus case (II) is verified and
the proof is complete.

In the following results we use the notation

R(t, t0) =

∫ t

t0

1

b(s)

(

∫ s

t0

u− t0
a(u)

∆u
)

∆s,

and

Q(t, t0) =

∫ t

t0

1

b(s)

(

∫ s

t0

u

a(u)
∆u

)

∆s.

Note that Q(t, t0) can be written as Q(t, t0) =
∫ t
t0

s
a(s)

(

∫ t
t0

1
b(u)∆u

)

∆s which is

quite useful in doing calculations.
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Lemma 2.3. Assume that either (2.2), (2.3) or (2.4) hold. If x(t) is
an eventually positive solution of equation (1.1), then there exists a positive
constants C1 and C2 and T0 ∈ [t0,∞)T such that

C1 ≤ x(t) ≤ C2Q(t, t0), (2.8)

and

x(t) ≥ R(t, T0)(a(t)(b(t)x
∆(t))∆)∆ for t ∈ [T0,∞)T. (2.9)

Proof. Given that x(t) is an eventually positive solution of equation (1.1).
Then there exists t1 ∈ [t0,∞)T such that x(t) > 0 for t ∈ [t1,∞)T. Now from
the Lemma 2.2, we have b(t)x∆(t) > 0 for t ∈ [t1,∞)T and so x(t) ≥ C1 > 0
for t ∈ [t1,∞)T. We integrate (a(t)(b(t)x∆(t))∆)∆

2

< 0 twice from t1 to t we
obtain

(b(t)x∆(t))∆ ≤
A0(t− t1)

a(t)
+

A1

a(t)
for t ∈ [t1,∞)T,

where A0 andA1 are constants. Integrating the last inequality again from t1 to
t, we have

x∆(t) <
A0

b(t)

∫ t

t1

s

a(s)
∆s+

A1

b(t)

∫ t

t1

1

a(s)
∆s+

A2

b(t)
.

Final integration of the last inequality from t1 to t yields

x(t) < A0

∫ t

t1

1

b(s)

(

∫ s

t1

u

a(u)
∆u

)

∆s+A1

∫ t

t1

1

b(s)

(

∫ s

t1

1

a(u)
∆u

)

∆s

+A2

∫ t

t1

1

b(s)
∆s+A3.

It is easy to see that every term on the right side of the above inequality is less
than Q(t, t1). Therefore there exist a constant C2 > 0 and T ∈ [t1,∞)T such
that

x(t) < C2Q(t, t0) for t ∈ [T,∞)T. (2.10)

To prove (2.9), let T0 ∈ [t0,∞)T be large enough such that x(t) satisfies
Case (I) or Case (II) of Lemma 2.2. Assume first that Case(I) holds. Since
(a(t)(b(t)x∆(t))∆)∆ is positive and nonincreasing, it follows that

a(t)(b(t)x∆(t))∆ ≥ a(t)(b(t)x∆(t))∆ − a(T0)(b(T0)x
∆(T0))

∆

=

∫ t

T0

(a(s)(b(s)x∆(s))∆)∆∆s
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≥ (a(t)(b(t)x∆(t))∆)∆(t− T0),

or

(b(t)x∆(t))∆ ≥
t− T0

a(t)
(a(t)(b(t)x∆(t))∆)∆ for t ∈ [T0,∞)T. (2.11)

Now integrating the last inequality from T0 to t to obtain

b(t)x∆(t) ≥

∫ t

T0

s− T0

a(s)
(a(s)(b(s)x∆(s))∆)∆∆s

≥ (a(t)(b(t)x∆(t))∆)∆
∫ t

T0

s− T0

a(s)
∆s,

or

x(t) ≥ (a(t)(b(t)x∆(t))∆)∆
∫ t

T0

1

b(s)

(

∫ s

T0

u− T0

a(u)
∆u

)

∆s, (2.12)

which prove (2.9). Suppose that Case (II) holds. Multiplying equation ( 1.1
)by R(σ2(t), T0) and integrating from T0 to t, we have

∫ t

T0

R(σ2(s), T0)(a(s)(b(s)x
∆(s))∆)∆

2

∆s+

∫ t

T0

R(σ2(s), T0)f(s, x(s− δ))∆s

= 0. (2.13)

Now apply integration by parts twice in the first part of the equation (2.13)
and then applying Case (II), we obtain (2.9). This completes the proof.

Theorem 2.4. Assume that either (2.2), (2.3) or (2.4) hold. Let f be
strongly sublinear and

∫ ∞

t0

f(t, CQσ(t, t0))∆t = ∞ (2.14)

for all C 6= 0. Then all solutions of equation (1.1) are oscillatory.

Proof. Assume that there exists a nonoscillatory solution x(t) of equation
(1.1). Without loss of generality, we may assume that x(t) > 0 for all t ∈
[t1,∞)T) (the case x(t) < 0 eventually can be treated similarly and will be
omitted). From Lemmas 2.2 and 2.3, there is a t1 ∈ [t0,∞)T such that

x∆(t) > 0, and (a(t)(b(t)x∆(t))∆)∆ > 0 (2.15)
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and

R(t, t1)(a(t)(b(t)x
∆(t))∆)∆ ≤ x(t) ≤ kQ(t, t1), (2.16)

for t ∈ [t1,∞)T. Now we define a function v by v(t) = (a(t)(b(t)x∆(t))∆)∆.
Then inequality (2.16) becomes

R(t, t1)v(t) ≤ x(t) ≤ kQ(t, t1). (2.17)

By Keller’s Chain rule, we have

(−v1−β(t))∆ ≥ (1− β)v−β(σ(t))f(t, xσ(t))

= (1− β)v−β(σ(t))xβ(σ(t))
f(t, xσ(t))

xβ(σ(t))

≥ (1− β)v−β(σ(t))xβ(σ(t))
f(t, kQσ(t, t1))

{kQσ(t, t1)}β

≥ (1− β)v−β(σ(t))Rβ(t, t1)v
β(t)

f(t, kQσ(t, t1))

{kQσ(t, t0)}β
,

or

(−v1−β(t))∆ ≥ (1− β)k−β Rβ(t, t1)

Qβ(σ(t)− δ, t1)
f(t, kQσ(t, t1)). (2.18)

Since limt→∞
R(t,t1)
Q(t,t1)

= 1, there is a positive constant M and T ∈ [t1,∞)T such

that Rβ(t,t1)
Qβ(σ(t),t1

> M for t ∈ [T,∞)T. Therefore from (2.18), we have

(−((a(t)(b(t)x∆(t))∆)∆)1−β)∆ ≥ (1 − β)Mk−βf(t, kQσ(t, t1)).

Now integrating the last inequality from T to t, we have

(1− β)Mk−β

∫ t

T
f(s, kQσ(s, t1))∆s ≤ ((a(T )(b(T )x∆(T ))∆)∆)1−β

− ((a(t)(b(t)x∆(t))∆)∆)1−β .

Since (a(t)(b(t)x∆(t))∆)∆ > 0, we have

∫ t

T
f(s, kQσ(s, t1))∆s <

kβ

(1− β)M
((a(T )(b(T )x∆(T ))∆)∆)1−β .

Hence
∫∞

T f(s, kQσ(s, t1))∆s < ∞, which contradicts (2.14). This completes
the proof of the theorem.
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Theorem 2.5. Assume that either (2.2), (2.3) or (2.4) hold. Let f be
strongly superlinear and

∫ ∞

t0

R(t, t0)f(t, C)∆t = ∞ (2.19)

for all C 6= 0. Then every solution of equation (1.1) is oscillatory.

Proof. Assume that there is a nonoscillatory solution x(t) of equation (1.1).
Without loss of generality, we may assume that x(t) > 0 for all t ∈ [T,∞)T( the
case x(t) < 0 eventually can be treated similarly and will be omitted). From
the Lemma 2.2 and 2.3, there exists t1 ∈ [T,∞)T such that (2.15) and

x(t) ≥

∫ t

t1

R(s, T )f(s, xσ(s))∆s, t ≥ t1. (2.20)

Since x(t) > 0 and x∆(t) > 0, there exists a constant k1 > 0 such that xσ(t) ≥
k1 for t ∈ [t1,∞)T. Since f is strongly superlinear, we have for some α > 1

f(t, xσ(t))

(xσ(t))α
≥

f(t, k1)

kα1
,

that is,

f(t, xσ(t)) ≥ k−α
1 f(t, k1)(x

σ(t))α. (2.21)

From equations (2.20) and (2.21), we obtain

x(t) ≥

∫ t

t1

k−α
1 R(s, t1)(x

σ(s))αf(s, k1)∆s, t ≥ t1.

Let θ(t) =
∫ t
t1
k−α
1 R(s, t1)(x

σ(s))αf(s, k1)∆s. Then by Keller’s Chain rule,we
have

(θ1−α(t))∆ ≤ (1− α)
θ∆(t)

(θσ(t))α
. (2.22)

Since θ∆(t) = k−α
1 R(t, t1)(x

σ(t))αf(t, k1),

(θ1−α(t))∆ ≤
(1− α)

(θσ(t))α
k−α
1 R(t, t1)(x

σ(t))αf(t, k1)

≤
(1− α)

(xσ(t))α
k−α
1 R(t, t1)(x

σ(t))αf(t, k1)
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or

R(t, t1)f(t, k1) ≤
kα1 (θ

1−α(t))∆

(1− α)
. (2.23)

Now integrate the last inequality from t1 to t and use α > 1, we obtain
∫ t

t1

R(s, T )f(s, k1)∆s ≤
kα1

(α− 1)
(θ1−α(t1)− θ1−α(t)). (2.24)

Hence
∫∞

t1
R(s, t1)f(s, k1)∆s < ∞, a contradiction to (2.19). The proof is now

complete.

We conclude this section with the following example

Example 2.6. Consider the neutral dynamic equation

(tx∆
2

(t))∆
2

+ 24tx1/3(σ(t)) = 0, t ∈ [1,∞)T. (2.25)

It is easy to see that all conditions of Theorem 2.5 are satisfied and hence all
solutions of equation (2.25) are oscillatory.

3. Oscillation Theorems of Equation (1.2)

In this section we establish some oscillation criteria for the neutral delay dy-
namic equation (1.2).

First we define an associated function of x(t) by z(t) = x(t) + p(t)x(t− τ),
and we derive the following lemmas

Lemma 3.1. Assume that either (2.2), (2.3) or (2.4) hold. If x(t) is an
eventually positive solution of equation (1.2), then there are only the following
two cases:

Case (I) z(t) > 0, z∆(t) > 0, (b(t)z∆(t))∆ > 0, (a(t)(b(t)z∆(t))∆)∆ > 0,

Case (II) z(t) > 0, z∆(t) > 0, (b(t)z∆(t))∆ < 0, (a(t)(b(t)z∆(t))∆)∆ > 0,

Lemma 3.2. Assume that either (2.2), (2.3) or (2.4) hold. If x(t) is
an eventually positive solution of equation (1.2), then there exists a positive
constants C1 and C2 and T0 ∈ [t0,∞)T such that

C1 ≤ z(t) ≤ C2Q(t, t0) (3.1)

and
z(t) ≥ R(t, T )(a(t)(b(t)z∆(t))∆)∆ for t ∈ [T0,∞)T. (3.2)
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The proofs of Lemmas 3.1 and 3.2 are similar to that of Lemmas 2.2 and
2.3 and hence the details are omitted.

Lemma 3.3. Assume that either (2.2), (2.3) or (2.4) hold. Let x(t) be an
eventually positive solution of equation (1.1), then there exists a T0 ∈ [t0,∞)T
such that

z∆(t) ≥ (a(t)(b(t)z∆(t))∆)∆R∆(t, T0), (3.3)

and

z∆(t− δ) ≥ (a(t)(b(t)z∆(t))∆)∆R∆(t− δ, T0) (3.4)

for t ∈ [T0,∞)T.

Proof. By Lemma 3.1 we have

z(t) > 0, z∆(t) > 0, (a(t)(b(t)z∆(t))∆)∆
2

≤ 0. (3.5)

Then

b(t)z∆(t) ≥

∫ t

t1

(b(s)z∆(s))∆∆s

≥

∫ t

t1

1

a(s)

(

∫ s

t1

(a(u)(b(u)z∆(u))∆)∆∆u
)

∆s

≥ (a(t)(b(t)z∆(t))∆)∆
∫ t

t1

s− t1
a(s)

∆s

or

z∆(t) ≥ (a(t)(b(t)z∆(t))∆)∆R∆(t, t1). (3.6)

Since δ > 0, we have from the last inequality that

z∆(t− δ) ≥ (a(t)(b(t)z∆(t))∆)∆R∆(t− δ, t1). (3.7)

This completes the proof.

Lemma 3.4. Assume that either (2.2), (2.3) or (2.4) hold. If x(t) is an
eventually positive solution of equation (1.2), then there exists T ∈ [t0,∞)T
such that

(1− p(t))z(t) ≤ x(t) ≤ z(t) for t ∈ [T,∞)T. (3.8)

Proof. From the definition of z(t), z(t) ≥ x(t) for t ∈ [T,∞)T. By Lemma
3.1,we have z(t) > 0 and z∆(t) > 0 for t ∈ [T,∞)T. Hence x(t) = z(t)−p(t)x(t−
τ) ≥ z(t)− p(t)z(t− τ) ≥ (1− p(t))z(t) for t ∈ [T,∞)T.
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Theorem 3.5. Assume that either (2.2), (2.3) or (2.4) hold. Furthermore
assume that there exists a real valued rd-continuous function q(t) such that

f(t, u)

u
≥ Mq(t) > 0 for u 6= 0, t ∈ [t0,∞)T. (3.9)

If there exists a positive ∆- differentiable function α(t) such that

lim sup
t→∞

∫ t

t0

α(s)
[

M(1− p(s− δ))q(s) −
(α∆(s))2

4α2(s)R∆(s− δ, t0)

]

∆s = ∞, (3.10)

then every solution of equation (1.2) is oscillatory.

Proof. Suppose to the contrary that there is a nonoscillatory solution x(t) of
equation (1.2). Without loss of generality, we may assume that x(t) is eventually
positive( the case x(t) is eventually negative can be treated similarly and will
be omitted). Then from the definition of z(t), we can find a t1 ∈ [t0,∞)T such
that z(t) > 0. By Lemmas 3.1 and 3.2, we see that there exists a t2 ∈ [t1,∞)T
such that

z∆(t) > 0 and (a(t)(b(t)z∆(t))∆)∆ > 0.

Now define w(t) = α(t) (a(t)(b(t)z
∆ (t))∆)∆

z(t−δ) . Then w(t) > 0 and

w∆(t) =
α(t)

z(t− δ)
(a(t)(b(t)z∆(t))∆)∆

2

+((a(t)(b(t)z∆(t))∆)∆)σ
( α(t)

z(t− δ)

)∆

≤ −Mα(t)q(t)(1 − (p(t− δ))

+((a(t)(b(t)z∆(t))∆)∆)σ
α∆(t)z(t− δ)− α(t)z∆(t− δ)

z(t− δ)zσ(t− δ)

≤ −Mα(t)q(t)(1 − p(t− δ)) +
α∆(t)

ασ(t)
w(σ(t))

−
α(t)R∆(t− δ, t1)

(ασ(t))2
w2(σ(t))

≤ −Mα(t)q(t)(1 − p(t− δ)) +
(α∆(t))2

4α(t)R∆(t− δ, t0)
.

Integrating the last inequality from t2 to t, we obtain
∫ t

t2

α(s)
[

Mq(s)(1− p(s))−
(α∆(s))2

4α2(s)R∆(s− δ, t0)

]

∆s ≤ w(t2)

and this contradicts (3.10).This completes the proof.
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The following corollaries are immediate .

Corollary 3.6. If b(t) ≡ 1 and the condition (3.10) in Theorem 3.5 is
replaced by

lim sup
t→∞

∫ t

t0

α(s)
[

(1− p(s− δ))q(s) −
(α∆(s))2

4α2(s)R∆(s− δ)

]

∆s = ∞,

where R(t) =
∫ t
t0

∫ s
t0

u
a(u)∆u∆s, then all solutions of the equation

(a(t)(x(t) + p(t)x(t− τ))∆
2

)∆
2

+ q(t)xσ(t− δ) = 0

are oscillatory.

Corollary 3.7. If a(t) ≡ 1, b(t) ≡ 1, and the condition (3.10) in Theorem
3.5 is replaced by

lim sup
t→∞

∫ t

t0

α(s)
[

(1− p(s− δ))q(s) −
1

2

(α∆(s)

α(s)s

)2]

∆s = ∞,

then all solutions of the equation

(x(t) + p(t)x(t− τ))∆
4

+ q(t)xσ(t− δ) = 0

are oscillatory.

We conclude this paper with the following example.

Example 3.8. Consider the neutral dynamic equation

(

x(t) +
1

t+ 3
x(t− 1)

)∆4

(t) +
λ

t2
x(σ(t)) = 0, t ∈ [1,∞)T. (3.11)

Here q(t) = λ
t2
. If we take α(t) = t, then

lim sup
t→∞

∫ t

1

(

s(1−
1

s
)
λ

s2
−

1

s4

)

∆s = ∞

if λ > 0. Hence by Theorem 3.5, all solutions of (3.11) are oscillatory if λ > 0.
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