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TO THE PÓLYA DISTRIBUTION

K. Teerapabolarn

Department of Mathematics
Faculty of Science
Burapha University

Chonburi, 20131, THAILAND

Abstract: This paper uses Stein’s method and the characterization associated
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1. Introduction

The Pólya or Pólya-Eggenberger distribution is typically and simply introduced
via Pólya urn scheme, discussed in Feller [5]. Start with a single urn containing
r red and N − r black balls. A ball is drawn at random, note the color, and
return it into the urn together with c additional balls of the same color. Repeat
this way for n draws. Let X be the number of red balls taken out in the n
drawings, then the distribution of X is a Pólya distribution with parameters
N,n, r and c, written by PY(N,n, r, c). The probability function of X is given
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by
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, x = 0, 1, ..., n, (1.1)

where N,n, r, c ∈ N and the mean and variance of X are µ = nr
N and σ2 =

rn(N+cn)(N−r)
N2(N+c) , respectively. It follows from Brown and Phillips [2] that limiting

distribution of X is a negative binomial distribution with parameters r
c and

1
1+cρ , where ρ = limn,N→∞

n
N is a constant, and they also gave a bound on the

rate of this convergence. Note that, in the case of c = 1, Teerapabolarn and
Wongkasem [6] gave a bound on the error of the binomial and Pólya probability
functions.

Let us consider the probability function in (1.1), it can be expressed as
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, (1.2)

where η =

{

0 if x = 0,

x− 1 if x = 1, ..., n.
It is seen that if r,N → ∞ while r

N remains

constant, then pX(x) →
(n
x

) (

r
N

)x (
1− r

N

)n−x
for every x = 0, 1, ..., n, that

is, PY(N,n, r, c) converges to a binomial distribution with parameters n and
r
N , denoted by B(n, r/N). Therefore B(n, r/N) can be used as an estimate of
PY(N,n, r, c) when N is sufficiently large and r

N is a constant.
In this paper, we determine a bound for the total variation distance between

B(n, r/N) and PY(N,n, r, c). This total variation is defined as follows:

d(B(n, p),PY(N,n, r, c)) = sup
A⊆{0,1,...,n}

|B(n, p){A} − PY(N,n, r, c){A}|, (1.3)

where p = r
N , B(n, p){A} =

∑

k∈A

(

n
k

)

pk(1 − p)n−k and PY(N,n, r, c){A} =
∑

k∈A pX(k).

2. Method

The tools for deriving the result for this approximation consist of Stein’s method
for the binomial distribution and the characterization associated with the Pólya
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random variable. We start with Stein’s equation in Barbour et al. [1]. Stein’s
equation for the binomial distribution with parameters n ∈ N and p ∈ (0, 1) is,
for given h, of the form

h(x)− Bn,p(h) = (n − x)pg(x + 1)− qxg(x), (2.1)

where Bn,p(h) =
∑n

k=0 h(k)
(n
k

)

pkqn−k and g and h are bounded real-valued
functions defined on {0, 1, ..., n}.

For A ⊆ {0, 1, ..., n}, let hA : {0, 1, ..., n} → R be defined by

hA(x) =

{

1 if x ∈ A,

0 if x /∈ A.
(2.2)

By following Barbour et al. [1] on pp. 189, let gA : N ∪ {0} → R satisfy
(2.1), where gA(0) = gA(1) and gA(x) = gA(n) for x ≥ n. Let x ∈ N and
∆gA(x)=gA(x+ 1)− gA(x), Ehm [4] showed that

sup
A

|∆gA(x)| ≤
1− pn+1 − qn+1

(n+ 1)pq
. (2.3)

Consider an important property of the characterization associated with a
non-negative integer-valued random variable Y in Lemma 3.1 of Cacoullos and
Papathanasiou [3]. It is stated that if Y has a finite variance, then

Cov(Y, f(Y )) =

∞
∑

y=0

∆f(y)

y
∑

k=0

[E(Y )− k]pY (k), (2.4)

for any function f : N ∪ {0} → R for which the infinite series is absolutely
convergent, where pY (k) is the probability function of Y . The following lemma
presents the characterization associated with the Pólya random variable.

Lemma 2.1. Let the Pólya random variable X with pX(k) > 0 for every

k ∈ {0, 1, ..., n} have the associated characterization a(x) =
∑

x

k=0
(µ−k)pX(k)
pX(x) ,

x = 0, 1, ..., n, then the following relations hold:

a(x) =
(n− x)(r + cx)

N
, x = 0, 1, ..., n (2.5)

and for A ⊆ {0, 1, ..., n},

∞
∑

x=0

∆gA(x)

x
∑

k=0

(µ− k)pX(k) =

n
∑

x=0

∆gA(x)
(n − x)(r + cx)

N
pX(x). (2.6)
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Proof. First, we shall show that (2.5) holds.

It is observed that a(x) =
∑

x

k=0(µ−k)pX(k)
pX(x) can be expressed in the form of

recurrence relation
a(0) = µ = nr

N and a(x) = a(x− 1)pX(x−1)
pX(x) + µ− x, x = 1, ..., n.

Using this relation, we have
a(1) = (n−1)(r+c)

N , a(2) = (n−2)(r+2c)
N , ..., a(k) = (n−k)(r+kc)

N for 2 < k ≤ n.
Therefore, by mathematical induction, (2.5) holds.

For the relation (2.6), it is clear that

∞
∑

x=0

∆gA(x)
x

∑

k=0

(µ− k)pX(k) =
n
∑

x=0

∆gA(x)
x

∑

k=0

(µ − k)pX(k)

=

n
∑

x=0

∆gA(x)a(x)pX (x). (2.7)

Substituting a(x) = (n−x)(r+cx)
N in (2.7), the relation (2.6) is also obtained.

3. Result

The following theorem shows a bound for the total variation distance between
B(n, r/N) and PY(N,n, r, c).

Theorem 3.1. Let X be the Pólya random variable with pX(k) > 0 for

every k ∈ {0, 1, ..., n} and p = 1− q = r
N . Then we have

d(B(n, p),PY(N,n, r, c)) ≤
(1− pn+1 − qn+1)c(n − 1)n

(n+ 1)(N + c)
. (3.1)

Proof. For A ⊆ {0, 1, ..., n}, substituting h, x by hA,X respectively and
taking expectation in (2.1), we obtain

B(n, p){A} − PY(N,n, r, c){A} = E[(n −X)pg(X + 1)− qXg(X)], (3.2)

where g = gA is defined as mentioned above.
Let δ(B,PY) = B(n, p){A} − PY(N,n, r, c){A}, then we obtain

δ(B,PY) = E[npg(X + 1)− pX∆g(X) −Xg(X)]
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= E[npg(X + 1)] − pE[X∆g(X)] − E[Xg(X)]

= npE[g(X + 1)] − pE[X∆g(X)] − Cov(X, g(X)) − µE[g(X)]

= (nr/N)E[∆g(X)] − (r/N)E[X∆g(X)] − Cov(X, g(X)).

Using Lemma 2.1 and (2.3), we have

∞
∑

x=0

∣

∣

∣

∣

∣

∆g(x)

x
∑

k=0

(µ− k)pX(k)

∣

∣

∣

∣

∣

=

n
∑

x=0

|∆g(x)|
(n− x)(r + cx)

N
pX(x) < ∞

and by (2.4) and Lemma 2.1, it follows that

δ(B,PY) =
n
∑

x=0

∆g(x)r

(

n− x

N

)

pX(x)−
n
∑

x=0

∆g(x)
(n − x)(r + cx)

N
pX(x)

= −

n
∑

x=1

∆g(x)
(n − x)cx

N
pX(x).

Therefore, it follows from (3.2) and (1.3),

d(B(n, p),PY(N,n, r, c)) ≤

n
∑

x=1

|∆g(x)|
(n − x)cx

N
pX(x)

≤
1− pn+1 − qn+1

(n+ 1)pq

n
∑

x=1

(n− x)cx

N
pX(x)

=
(1− pn+1 − qn+1)c(n − 1)n

(n+ 1)(N + c)
. �

Remark. If c = 1 and N = M + 1, then pX(x) =
(r+x−1

x
)(M−r+n−x

n−x
)

(M+n

n
)

, x =

0, 1, ..., n, is the negative hypergeometric probability function with parameters
M,n and r. Thus, immediately from (3.1), a result on binomial approxima-
tion to the negative hypergeometric distribution with parameters M,n and r,
denoted by NH(M,n, r), can also be obtained in the following corollary.

Corollary 3.1. Let p = 1− q = r
M+1 , then we have the following:

d(B(n, p),NH(M,n, r)) ≤
(1− pn+1 − qn+1)(n− 1)n

(n+ 1)(M + 2)
. (3.3)
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4. Conclusion

In this study, a bound for the total variation distance between the binomial and
Pólya distributions is obtained using Stein’s method and the characterization
associated with the Pólya random variable. In view of this bound, it is observed
that if cn

N is small, or N is large, then the result in Theorem 3.1 gives a good
binomial approximation, that is, the binomial distribution with parameters n
and r/N can be used as an approximation of the Pólya with parameters N,n, r
and c when N is sufficiently large or cn

N is sufficiently small.
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