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Abstract: The purpose of this paper is to introduce the notions of two
operators ϕS and ΨS induced by a given stack S and a topology τ , and to
investigate some properties of them. In particular, we study the collection τS
of sets induced by the operator ΨS .
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1. Introduction

The concept of grill on a topological space was introduced by Choquet [2]: A
grill G on X is a nonempty subset G of the power set P (X) of X satisfying the
following conditions:

(i) ∅ /∈ G.

(ii) A ⊆ B, A ∈ G implies B ∈ G.

(iii) A,B ∈ G implies A ∪B ∈ G.

A nonempty family S ⊆ P (X) is called a stack [3,6] if it satisfies the above
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conditions (i) and (ii).

In 2007, Roy and Mukherjee [5] introduced an operator defined by a grill
on a given topological space and showed that it satisfies Kuratowski’s closure
axioms [4]. They also investigated an associated topology induced by a grill
on a given topological space. In 2008, Al-Omari and Noiri [1] introduced and
investigated a new generalized open set Ψ̃G induced by the operation defined
by a grill G on a given topological space.

In this paper, we are going to introduce another operator with the help
of the stack on a given topology. It is obviously a generalized notion of the
operator defined by a grill on a given topological space in [5]. First, we introduce
the notion of operator ϕS defined by a given stack S and a topology τ , and
investigate some basic properties. Second, we consider another operator ΨS

defined by the operator ϕS , and study its properties and the collection τS of all
subsets induced by the operator ΨS . In particular, we show that the collection
τS satisfies the following: (i) ∅,X ∈ τS; (ii) the union of any subfamily of τS
is also in it.

2. Operator ϕS

In this section, we introduce the notion of operator ϕS defined by a given stack
S and a topology τ , and investigate some basic properties.

For a topological space (X, τ) and x ∈ X, we will denote τ(x) the collection
of all open sets containing x.

Definition 2.1. Let (X, τ) be a topological space and S be a stack on X.

we define a mapping ϕS : P (X) → P (X) as the following:

ϕS(A) = {x ∈ X : A ∩ U ∈ S for all U ∈ τ(x)}.

Lemma 2.2. Let (X, τ) be a topological space and S be a stack on X.
For A ⊆ X,

x /∈ ϕS(A) iff there exists U ∈ τ(x) such that U ∩A /∈ S.

Theorem 2.3. Let (X, τ) be a topological space and S be a stack on X.

(i) ϕS(∅) = ∅.

(ii) A ⊆ B ⊆ X implies ϕS(A) ⊆ ϕS(B).

(iii) ϕS(A) ⊆ cl(A).

(iv) ϕS(ϕS(A)) ⊆ ϕS(A).

(v) ϕS(A) is closed.
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Proof. (i) Obvious.

(ii) It is easily obtained from the notion of stack.

(iii) Suppose that x /∈ cl(A); then there exists U ∈ τ(x) such that U∩A = ∅.
It implies U ∩A /∈ S and so x /∈ ϕS(A) by Lemma 2.2.

(iv) Let x ∈ ϕS(ϕS(A)). Then for every U ∈ τ(x), ϕS(A) ∩ U ∈ S. Since
ϕS(A) ∩ U 6= ∅, there exists an element z ∈ ϕS(A) ∩ U . So z ∈ ϕS(A) and U
is also an open set containing z. From the definition of operation ϕS , we have
A ∩ U ∈ S, and so x ∈ ϕS(A).

(v) If x ∈ cl(ϕS(A)), then for each U ∈ τ(x), U∩ϕS(A) 6= ∅ and U∩A ∈ ϕS .
So x ∈ ϕS(A).

The reverse inclusion of (vi) in Theorem 3.3 may not be hold as shown in
the following example.

Example 2.4. Let X = {a, b, c, d, e}, a topology τ = {∅, {a}, {b, c, d},
{a, b, c, d}, X} and a stack S = {{a, b, d}, {a, b, d, e}, {a, b, c, d},X}. For a set
A = {a, b, d}, ϕS(A) = {e} and ϕS(ϕS(A)) = ∅. So ϕS(ϕS(A)) 6= ϕS(A).

Remark 2.5. In the above example, we know ϕS(X) = {e}. So, it is
not true ϕS(X) = X in general. Furthermore, for a set A = {a, b, d}, we
have ϕS(A) = {e} 6= A. Consequently, we know that there is no any inclusion
relation between ϕS(A) and A.

Theorem 2.6. If U ∩A /∈ S for some U ∈ τ(x), then U ∩ ϕS(A) /∈ S and
in particular, U ∩ ϕS(A) = ∅.

Proof. Let U ∈ τ(x) with U ∩ A /∈ S. Assume that U ∩ ϕS(A) ∈ S;
then from U ∩ ϕS(A) ∈ S, it follows U ∩ ϕS(A) 6= ∅ and there exists an
element y ∈ U ∩ ϕS(A). Since U is an open set containing y and y ∈ ϕS(A),
from the definition of ϕS , U ∩ A ∈ S and it is a contradiction. Consequently,
U ∩ ϕS(A) /∈ S.

For the proof of the last statement, assume that U ∩ ϕS(A) 6= ∅ for some
U ∈ τ(x). Then there exists an element y ∈ U ∩ ϕS(A) and so U ∩A ∈ S. So
the proof of last statement is completed.

Theorem 2.7. For A ⊆ X, ϕS(A ∪ ϕS(A)) = ϕS(A).

Proof. From (ii) of Theorem 2.3, it is obviously ϕS(A) ⊆ ϕS(A ∪ ϕS(A)).
For the other inclusion, let x /∈ ϕS(A); then there exists an open set U

containing x such that U ∩ A /∈ S. From Theorem 2.6, U ∩ ϕS(A) = ∅ and
U∩(A∪ϕS(A)) = (U∩A)∪(U∩ϕS(A)) = U∩A /∈ S. So x /∈ ϕS(A∪ϕS(A)).
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Lemma 2.8. Let (X, τ) be a topological space and S be a stack on X.
If U ∈ τ , then U ∩ ϕS(A) = U ∩ ϕS(U ∩A).

Proof. From (ii) of Theorem 2.3, it is obviously obtained that U ∩ ϕS(U ∩
A) ⊆ U ∩ ϕS(A).

For the other inclusion, let x ∈ U ∩ ϕS(A) and V any open set containing
x. Then x ∈ U ∩ V and x ∈ ϕS(A). So (U ∩ V ) ∩ A = (U ∩ A) ∩ V ∈ S. This
implies x ∈ ϕS(U ∩A) and hence, x ∈ U ∩ ϕS(U ∩A).

Theorem 2.9. Let (X, τ) be a topological space and S be a stack on X.
If τ − {∅} ⊆ S and U ∈ τ , then U ⊆ ϕS(U).

Proof. By hypothesis, ϕS(X) = X. From Lemma 2.8, it follows U = U ∩
ϕS(X) = U ∩ϕS(U ∩X) = U ∩ϕS(U) ⊆ ϕS(U). So it implies U ⊆ ϕS(U).

Theorem 2.10. Let (X, τ) be a topological space and S be a stack on X.
If τ − {∅} ⊆ S, then cl(U) = ϕS(U) for U ∈ τ .

Proof. Let x /∈ cl(U). Then there exists an open set G containing x such
that U ∩ G = ∅. By the notion of stack, U ∩ G /∈ S. It implies x /∈ ϕS(U)
and ϕS(U) ⊆ cl(U). Finally, by Theorem 2.3 (v) and Theorem 2.9, we have
cl(U) = ϕS(U).

3. Operator ΨS

In this section, we consider another operator ΨS defined by the operator ϕS ,
and study its properties and the collection τS of sets defined by the operator
ΨS .

Definition 3.1. Let (X, τ) be a topological space and S be a stack on X.
We define an operator ΨS : P (X) → P (X) as the following: For A ⊆ X,

ΨS(A) = A ∪ ϕS(A).

Theorem 3.2. Let (X, τ) be a topological space and S be a stack on X.
For A ⊆ X,

(i) ΨS(∅) = ∅.
(ii) A ⊆ ΨS(A); moreover ΨS(X) = X.
(iii) A ⊆ B ⊆ X implies ΨS(A) ⊆ ΨS(B).
(iv) ΨS(ΨS(A)) = ΨS(A).
(v) For A,B ⊆ X, ΨS(A ∩B) ⊆ ΨS(A) ∩ΨS(B).
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Proof. (i) Since ϕS(∅) = ∅, ΨS(∅) = ∅ ∪ ϕS(∅) = ∅.

(ii) Obvious.

(iii) For A ⊆ B ⊆ X, it is obtained by (i) of Theorem 2.3.

(iv) From Theorem 2.7, it follows

ΨS(ΨS(A)) = ΨS(A ∪ ϕS(A))

= (A ∪ ϕS(A)) ∪ ϕS(A ∪ ϕS(A))

= A ∪ ϕS(A) ∪ ϕS(A)

= A ∪ ϕS(A)

= ΨS(A)

(v) Obvious.

The equality in (v) of Theorem 3.3 is not true in general.

Example 3.3. In Example 2.4, consider A = {a, b, d} and B = {d, e}.
Note that ϕS(A) = {e}, ϕS(B) = ∅ and ϕS(A∩B) = ϕS({d}) = ∅. So ΨS(A) =
{a, b, d, e} and ΨS(B) = B. From these facts, ΨS(A ∩ B) = {d}; ΨS(A) ∩
ΨS(B) = {d, e}. So ΨS(A ∩B) 6= ΨS(A) ∩ΨS(B).

Definition 3.4. Let (X, τ) be a topological space and S be a stack on X.

we define a mapping ΨS : P (X) → P (X) as the following:

τS = {U ⊆ X : ΨS(X − U) = X − U}.

Theorem 3.5. Let (X, τ) be a topological space and S be a stack on X.
Then

(i) ∅,X ∈ τS.
(ii) If Uα ∈ τS for α ∈ J , then ∪Uα ∈ τS.

Proof. (i) Since ΨS(X) = X and ΨS(∅) = ∅, both ∅ and X are in τS.

(ii) Let Uα ∈ τS for α ∈ J . Then from ϕS(X − ∪Uα) ⊆ ϕS(X − Uα) and
Uα ∈ τS, we have ϕS(X −∪Uα) ⊆ ϕS(X −Uα) ⊆ X −Uα and ϕS(X −∪Uα) ⊆
∩(X−Uα) = X−∪Uα. So ΨS(X−∪Uα) = (X−∪Uα)∪ϕS(X−∪Uα) = X−∪Uα,
and hence ∪Uα ∈ τS.

For two elements of τS, the intersection may not be an element of τS as
shown in the next example.
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Example 3.6. In Example 2.4, consider U1 = {d, e} and U2 = {a, e}.
Note that ϕS(X −U1) = ϕS({a, b, c}) = ∅ and ϕS(X −U2) = ϕS({b, c, d}) = ∅.
It implies ΨS(X − U1) = X − U1 and ΨS(X − U2) = X − U2, i.e. U1, U2 ∈
τS. But for U1 ∩ U2 = {e}, ϕS(X − (U1 ∩ U2)) = ϕS({a, b, c, d}) = {e} and
ΨS(X − (U1 ∩ U2)) = X. Since ΨS(X − (U1 ∩ U2)) 6= X − (U1 ∩ U2), we have
U1 ∩ U2 /∈ τS.

Let (X, τ) be a topological space and S be a stack on X. Then the elements
of τS are said to be τS -open. If the complement of a subset of X is τS-open,
then the subset is said to be τS-closed.

Now we define the operators iτS , cτS : P (X) → P (X) as the following: For
A ⊆ X,

iτS(A) = ∪{U ⊆ X : U ⊆ A,U ∈ τS};

cτS(A) = ∩{F ⊆ X : A ⊆ F,X − F ∈ τS} :

The following two theorems are obviously obtained from the definitions of
operations iτS , cτS :

Theorem 3.7. Let (X, τ) be a topological space and S be a stack on X.
For A,B ⊆ X

(i) iτS(∅) = ∅.
(ii) iτS(A) ⊆ A.

(iii) If A ⊆ B, then iτS(A) ⊆ iτS(B).

(iv) iτS(iτS(A)) = iτS(A).

Theorem 3.8. Let (X, τ) be a topological space and S be a stack on X.
For A,B ⊆ X

(i) cτS(X) = X.

(ii) A ⊆ cτS(A).

(iii) If A ⊆ B, then cτS(A) ⊆ cτS(B).

(iv) cτS(cτS(A)) = cτS(A).

Theorem 3.9. Let (X, τ) be a topological space and S be a stack on X.
For A ⊆ X, A is τS-closed iff ΨS(A) = A.

Proof. A is τS-closed iffX−A is τS-open iff ΨS(X−(X−A)) = X−(X−A).
So we have the statement.

Theorem 3.10. Let (X, τ) be a topological space and S be a stack on X.
For A ⊆ X,

(i) x ∈ iτS(A) iff there exists a τS-open set U containing x such that U ⊆ A.

(ii) x ∈ cτS(A) iff for each τS-open set V containing x, A ∩ V 6= ∅.
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Proof. Obvious.

Theorem 3.11. Let (X, τ) be a topological space and S be a stack on X.
If x ∈ iτS(A), then there exists some W ∈ τ(x) satisfying Ac ∩W /∈ S.

Proof. For x ∈ iτS(A), by Theorem 3.10, there exists a τS-open set U
containing x such that U ⊆ A. From X − A ⊆ X − U = ΨS(X − U), we have
x /∈ ϕS(X − U), and so there exists an open set W containing x such that
(X − U) ∩W /∈ S. Since S is a stack and Ac ⊆ U c, we have Ac ∩W /∈ S.

Theorem 3.12. Let (X, τ) be a topological space and S be a stack on X.

(i) cτS(A) = ΨS(A) for A ⊆ X.

(ii) If A /∈ S, then X −A ∈ τS for A ⊆ X.

(iii) ϕS(A) is τS-closed for A ⊆ X.

Proof. (i) First, by Theorem 3.2 (iv) and Theorem 3.9, ΨS(A) is τS-closed.

From A ⊆ ΨS(A), it follows A ⊆ cτS(A) ⊆ ΨS(A).

Furthermore, since A ⊆ cτS(A), from Theorem 3.2(iii) and Theorem 3.9, it
follows ΨS(A) ⊆ ΨS(cτS(A)) = cτS(A). Consequently, cτS(A) = ΨS(A).

(ii) If A /∈ S, then by Lemma 2.2, we know that ϕS(A) = ∅. So ΨS(X −
(X −A)) = ΨS(A) = A ∪ ϕS(A) = A = X − (X −A). So X −A ∈ τS.

(iii) For A ⊆ X, from Theorem 2.3 (iv), ΨS(ϕS(A)) = ϕS(A)∪ϕS(ϕS(A)) =
ϕS(A). By Theorem 3.9, ϕS(A) is τS-closed

Theorem 3.13. Let (X, τ) be a topological space and S be a stack on X.
Then for U ∈ τ and A /∈ S,

U −A ∈ τS.

Proof. First, we show that ϕS(U
c ∪ A) ⊆ U c ∪ A for U ∈ τ and A /∈ S.

Assume x ∈ ϕS(U
c ∪ A); then for every G ∈ τ(x), G ∩ (U c ∪ A) = (G ∩ U c) ∪

(G∩A) ∈ S. If there exists an open set G′ ∈ τ(x) such that G′ ∩U c = ∅, since
G′ ∩A ∈ S and S is a stack, we have A ∈ S. It contradicts to the fact A /∈ S.
So G ∩ U c 6= ∅ for every G ∈ τ(x) and this implies x ∈ cl(U c) = U c ⊆ U c ∪ A.
Hence ϕS(U

c ∪A) ⊆ U c ∪ A and from the fact, it follows ΨS(X − (U − A)) =
X − (U −A) ∪ ϕS(X − (U −A)) = X − (U −A). Hence U −A ∈ τS.

Theorem 3.14. Let (X, τ) be a topological space and S be a stack on X.

For any W ∈ τS, W = ∪(U −A) for U ∈ τ and A /∈ S.
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Proof. For any W ∈ τS, let x ∈ W . Then ΨS(X − W ) = (X − W ) ∪
ϕS(X −W ) = X −W and x /∈ X −W . So x /∈ ϕS(X −W ) and there exists
some U ∈ τ(x) such that (X−W )∩U /∈ S. Put A = (X−W )∩U . Then x /∈ A
and A /∈ S. Moreover, we have x ∈ U −A ⊆ W . So the proof is completed.

Theorem 3.15. Let (X, τ) be a topological space and S be a stack on X.
Then τ ⊆ τS.

Proof. It is obvious from Theorem 3.14 and ∅ /∈ S.
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