International Journal of Pure and Applied Mathematics

Volume 78 No. 6 2012, 887-894

ISSN: 1311-8080 (printed version) url: http://www.ijpam.eu

OPERATORS INDUCED BY STACKS ON A TOPOLOGICAL SPACE

Won Keun Min¹ §, Young Key Kim²

¹Department of Mathematics Kangwon National University Chuncheon, 200-701, KOREA ²Department of Mathematics MyongJi University Yongin, 449-728, KOREA

Abstract: The purpose of this paper is to introduce the notions of two operators φ_S and Ψ_S induced by a given stack S and a topology τ , and to investigate some properties of them. In particular, we study the collection τS of sets induced by the operator Ψ_S .

AMS Subject Classification: 54A05 Key Words: stacks, grill, operators φ_{S} , Ψ_{S}

1. Introduction

The concept of grill on a topological space was introduced by Choquet [2]: A grill \mathcal{G} on X is a nonempty subset \mathcal{G} of the power set P(X) of X satisfying the following conditions:

- (i) $\emptyset \notin \mathcal{G}$.
- (ii) $A \subseteq B$, $A \in \mathcal{G}$ implies $B \in \mathcal{G}$.
- (iii) $A, B \in \mathcal{G}$ implies $A \cup B \in \mathcal{G}$.

A nonempty family $S \subseteq P(X)$ is called a stack [3,6] if it satisfies the above

Received: January 12, 2012

© 2012 Academic Publications, Ltd. url: www.acadpubl.eu

[§]Correspondence author

conditions (i) and (ii).

In 2007, Roy and Mukherjee [5] introduced an operator defined by a grill on a given topological space and showed that it satisfies Kuratowski's closure axioms [4]. They also investigated an associated topology induced by a grill on a given topological space. In 2008, Al-Omari and Noiri [1] introduced and investigated a new generalized open set $\widetilde{\Psi}_{G}$ induced by the operation defined by a grill \mathcal{G} on a given topological space.

In this paper, we are going to introduce another operator with the help of the stack on a given topology. It is obviously a generalized notion of the operator defined by a grill on a given topological space in [5]. First, we introduce the notion of operator φ_{S} defined by a given stack S and a topology τ , and investigate some basic properties. Second, we consider another operator Ψ_{S} defined by the operator φ_{S} , and study its properties and the collection τS of all subsets induced by the operator Ψ_{S} . In particular, we show that the collection τS satisfies the following: (i) $\emptyset, X \in \tau S$; (ii) the union of any subfamily of τS is also in it.

2. Operator $\varphi_{\mathcal{S}}$

In this section, we introduce the notion of operator φ_S defined by a given stack S and a topology τ , and investigate some basic properties.

For a topological space (X, τ) and $x \in X$, we will denote $\tau(x)$ the collection of all open sets containing x.

Definition 2.1. Let (X, τ) be a topological space and \mathcal{S} be a stack on X. we define a mapping $\varphi_{S}: P(X) \to P(X)$ as the following:

$$\varphi_{S}(A) = \{ x \in X : A \cap U \in \mathcal{S} \text{ for all } U \in \tau(x) \}.$$

Lemma 2.2. Let (X,τ) be a topological space and S be a stack on X. For $A \subseteq X$,

 $x \notin \varphi_{S}(A)$ iff there exists $U \in \tau(x)$ such that $U \cap A \notin S$.

Theorem 2.3. Let (X, τ) be a topological space and S be a stack on X.

- (i) $\varphi_{S}(\emptyset) = \emptyset$.
- (ii) $A \subseteq B \subseteq X$ implies $\varphi_{S}(A) \subseteq \varphi_{S}(B)$.
- (iii) $\varphi_{S}(A) \subseteq cl(A)$.
- (iv) $\varphi_{S}(\varphi_{S}(A)) \subseteq \varphi_{S}(A)$.
- (v) $\varphi_{S}(A)$ is closed.

Proof. (i) Obvious.

- (ii) It is easily obtained from the notion of stack.
- (iii) Suppose that $x \notin cl(A)$; then there exists $U \in \tau(x)$ such that $U \cap A = \emptyset$. It implies $U \cap A \notin \mathcal{S}$ and so $x \notin \varphi_{S}(A)$ by Lemma 2.2.
- (iv) Let $x \in \varphi_{S}(\varphi_{S}(A))$. Then for every $U \in \tau(x)$, $\varphi_{S}(A) \cap U \in S$. Since $\varphi_{S}(A) \cap U \neq \emptyset$, there exists an element $z \in \varphi_{S}(A) \cap U$. So $z \in \varphi_{S}(A)$ and U is also an open set containing z. From the definition of operation φ_{S} , we have $A \cap U \in S$, and so $x \in \varphi_{S}(A)$.
- (v) If $x \in cl(\varphi_{S}(A))$, then for each $U \in \tau(x)$, $U \cap \varphi_{S}(A) \neq \emptyset$ and $U \cap A \in \varphi_{S}$. So $x \in \varphi_{S}(A)$.

The reverse inclusion of (vi) in Theorem 3.3 may not be hold as shown in the following example.

Example 2.4. Let $X = \{a, b, c, d, e\}$, a topology $\tau = \{\emptyset, \{a\}, \{b, c, d\}, \{a, b, c, d\}, X\}$ and a stack $S = \{\{a, b, d\}, \{a, b, d, e\}, \{a, b, c, d\}, X\}$. For a set $A = \{a, b, d\}$, $\varphi_{S}(A) = \{e\}$ and $\varphi_{S}(\varphi_{S}(A)) = \emptyset$. So $\varphi_{S}(\varphi_{S}(A)) \neq \varphi_{S}(A)$.

Remark 2.5. In the above example, we know $\varphi_{S}(X) = \{e\}$. So, it is not true $\varphi_{S}(X) = X$ in general. Furthermore, for a set $A = \{a, b, d\}$, we have $\varphi_{S}(A) = \{e\} \neq A$. Consequently, we know that there is no any inclusion relation between $\varphi_{S}(A)$ and A.

Theorem 2.6. If $U \cap A \notin \mathcal{S}$ for some $U \in \tau(x)$, then $U \cap \varphi_{S}(A) \notin \mathcal{S}$ and in particular, $U \cap \varphi_{S}(A) = \emptyset$.

Proof. Let $U \in \tau(x)$ with $U \cap A \notin \mathcal{S}$. Assume that $U \cap \varphi_{\mathbb{S}}(A) \in \mathcal{S}$; then from $U \cap \varphi_{\mathbb{S}}(A) \in \mathcal{S}$, it follows $U \cap \varphi_{\mathbb{S}}(A) \neq \emptyset$ and there exists an element $y \in U \cap \varphi_{\mathbb{S}}(A)$. Since U is an open set containing y and $y \in \varphi_{\mathbb{S}}(A)$, from the definition of $\varphi_{\mathbb{S}}$, $U \cap A \in \mathcal{S}$ and it is a contradiction. Consequently, $U \cap \varphi_{\mathbb{S}}(A) \notin \mathcal{S}$.

For the proof of the last statement, assume that $U \cap \varphi_{S}(A) \neq \emptyset$ for some $U \in \tau(x)$. Then there exists an element $y \in U \cap \varphi_{S}(A)$ and so $U \cap A \in \mathcal{S}$. So the proof of last statement is completed.

Theorem 2.7. For $A \subseteq X$, $\varphi_{S}(A \cup \varphi_{S}(A)) = \varphi_{S}(A)$.

Proof. From (ii) of Theorem 2.3, it is obviously $\varphi_{S}(A) \subseteq \varphi_{S}(A \cup \varphi_{S}(A))$. For the other inclusion, let $x \notin \varphi_{S}(A)$; then there exists an open set U containing x such that $U \cap A \notin \mathcal{S}$. From Theorem 2.6, $U \cap \varphi_{S}(A) = \emptyset$ and $U \cap (A \cup \varphi_{S}(A)) = (U \cap A) \cup (U \cap \varphi_{S}(A)) = U \cap A \notin \mathcal{S}$. So $x \notin \varphi_{S}(A \cup \varphi_{S}(A))$. \square **Lemma 2.8.** Let (X, τ) be a topological space and S be a stack on X. If $U \in \tau$, then $U \cap \varphi_{S}(A) = U \cap \varphi_{S}(U \cap A)$.

Proof. From (ii) of Theorem 2.3, it is obviously obtained that $U \cap \varphi_{S}(U \cap A) \subseteq U \cap \varphi_{S}(A)$.

For the other inclusion, let $x \in U \cap \varphi_{S}(A)$ and V any open set containing x. Then $x \in U \cap V$ and $x \in \varphi_{S}(A)$. So $(U \cap V) \cap A = (U \cap A) \cap V \in \mathcal{S}$. This implies $x \in \varphi_{S}(U \cap A)$ and hence, $x \in U \cap \varphi_{S}(U \cap A)$.

Theorem 2.9. Let (X, τ) be a topological space and S be a stack on X. If $\tau - \{\emptyset\} \subseteq S$ and $U \in \tau$, then $U \subseteq \varphi_{S}(U)$.

Proof. By hypothesis, $\varphi_{S}(X) = X$. From Lemma 2.8, it follows $U = U \cap \varphi_{S}(X) = U \cap \varphi_{S}(U \cap X) = U \cap \varphi_{S}(U) \subseteq \varphi_{S}(U)$. So it implies $U \subseteq \varphi_{S}(U)$. \square

Theorem 2.10. Let (X, τ) be a topological space and S be a stack on X. If $\tau - \{\emptyset\} \subseteq S$, then $cl(U) = \varphi_S(U)$ for $U \in \tau$.

Proof. Let $x \notin cl(U)$. Then there exists an open set G containing x such that $U \cap G = \emptyset$. By the notion of stack, $U \cap G \notin \mathcal{S}$. It implies $x \notin \varphi_{\mathbf{S}}(U)$ and $\varphi_{\mathbf{S}}(U) \subseteq cl(U)$. Finally, by Theorem 2.3 (v) and Theorem 2.9, we have $cl(U) = \varphi_{\mathbf{S}}(U)$.

3. Operator $\Psi_{\mathcal{S}}$

In this section, we consider another operator Ψ_{S} defined by the operator φ_{S} , and study its properties and the collection τS of sets defined by the operator Ψ_{S} .

Definition 3.1. Let (X, τ) be a topological space and \mathcal{S} be a stack on X. We define an operator $\Psi_{S}: P(X) \to P(X)$ as the following: For $A \subseteq X$,

$$\Psi_{\mathsf{S}}(A) = A \cup \varphi_{\mathsf{S}}(A).$$

Theorem 3.2. Let (X, τ) be a topological space and S be a stack on X. For $A \subseteq X$,

- (i) $\Psi_{S}(\emptyset) = \emptyset$.
- (ii) $A \subseteq \Psi_{S}(A)$; moreover $\Psi_{S}(X) = X$.
- (iii) $A \subseteq B \subseteq X$ implies $\Psi_{S}(A) \subseteq \Psi_{S}(B)$.
- (iv) $\Psi_{\mathsf{S}}(\Psi_{\mathsf{S}}(A)) = \Psi_{\mathsf{S}}(A)$.
- (v) For $A, B \subseteq X$, $\Psi_{S}(A \cap B) \subseteq \Psi_{S}(A) \cap \Psi_{S}(B)$.

Proof. (i) Since $\varphi_{S}(\emptyset) = \emptyset$, $\Psi_{S}(\emptyset) = \emptyset \cup \varphi_{S}(\emptyset) = \emptyset$.

- (ii) Obvious.
- (iii) For $A \subseteq B \subseteq X$, it is obtained by (i) of Theorem 2.3.
- (iv) From Theorem 2.7, it follows

$$\begin{split} \Psi_{\mathbb{S}}(\Psi_{\mathbb{S}}(A)) &= \Psi_{\mathbb{S}}(A \cup \varphi_{\mathbb{S}}(A)) \\ &= (A \cup \varphi_{\mathbb{S}}(A)) \cup \varphi_{\mathbb{S}}(A \cup \varphi_{\mathbb{S}}(A)) \\ &= A \cup \varphi_{\mathbb{S}}(A) \cup \varphi_{\mathbb{S}}(A) \\ &= A \cup \varphi_{\mathbb{S}}(A) \\ &= \Psi_{\mathbb{S}}(A) \end{split}$$

(v) Obvious. \Box

The equality in (v) of Theorem 3.3 is not true in general.

Example 3.3. In Example 2.4, consider $A = \{a, b, d\}$ and $B = \{d, e\}$. Note that $\varphi_{S}(A) = \{e\}$, $\varphi_{S}(B) = \emptyset$ and $\varphi_{S}(A \cap B) = \varphi_{S}(\{d\}) = \emptyset$. So $\Psi_{S}(A) = \{a, b, d, e\}$ and $\Psi_{S}(B) = B$. From these facts, $\Psi_{S}(A \cap B) = \{d\}$; $\Psi_{S}(A) \cap \Psi_{S}(B) = \{d, e\}$. So $\Psi_{S}(A \cap B) \neq \Psi_{S}(A) \cap \Psi_{S}(B)$.

Definition 3.4. Let (X, τ) be a topological space and S be a stack on X. we define a mapping $\Psi_S : P(X) \to P(X)$ as the following:

$$\tau \mathcal{S} = \{ U \subseteq X : \Psi_{S}(X - U) = X - U \}.$$

Theorem 3.5. Let (X, τ) be a topological space and S be a stack on X. Then

- (i) $\emptyset, X \in \tau S$.
- (ii) If $U_{\alpha} \in \tau S$ for $\alpha \in J$, then $\cup U_{\alpha} \in \tau S$.

Proof. (i) Since $\Psi_{S}(X) = X$ and $\Psi_{S}(\emptyset) = \emptyset$, both \emptyset and X are in τS .

(ii) Let $U_{\alpha} \in \tau \mathcal{S}$ for $\alpha \in J$. Then from $\varphi_{S}(X - \cup U_{\alpha}) \subseteq \varphi_{S}(X - U_{\alpha})$ and $U_{\alpha} \in \tau \mathcal{S}$, we have $\varphi_{S}(X - \cup U_{\alpha}) \subseteq \varphi_{S}(X - U_{\alpha}) \subseteq X - U_{\alpha}$ and $\varphi_{S}(X - \cup U_{\alpha}) \subseteq \cap (X - U_{\alpha}) = X - \cup U_{\alpha}$. So $\Psi_{S}(X - \cup U_{\alpha}) = (X - \cup U_{\alpha}) \cup \varphi_{S}(X - \cup U_{\alpha}) = X - \cup U_{\alpha}$, and hence $\cup U_{\alpha} \in \tau \mathcal{S}$.

For two elements of τS , the intersection may not be an element of τS as shown in the next example.

Example 3.6. In Example 2.4, consider $U_1 = \{d, e\}$ and $U_2 = \{a, e\}$. Note that $\varphi_{S}(X - U_1) = \varphi_{S}(\{a, b, c\}) = \emptyset$ and $\varphi_{S}(X - U_2) = \varphi_{S}(\{b, c, d\}) = \emptyset$. It implies $\Psi_{S}(X - U_1) = X - U_1$ and $\Psi_{S}(X - U_2) = X - U_2$, i.e. $U_1, U_2 \in \tau S$. But for $U_1 \cap U_2 = \{e\}$, $\varphi_{S}(X - (U_1 \cap U_2)) = \varphi_{S}(\{a, b, c, d\}) = \{e\}$ and $\Psi_{S}(X - (U_1 \cap U_2)) = X$. Since $\Psi_{S}(X - (U_1 \cap U_2)) \neq X - (U_1 \cap U_2)$, we have $U_1 \cap U_2 \notin \tau S$.

Let (X, τ) be a topological space and S be a stack on X. Then the elements of τ_{S} are said to be τ_{S} -open. If the complement of a subset of X is τ_{S} -open, then the subset is said to be τ_{S} -closed.

Now we define the operators $i_{\tau S}, c_{\tau S}: P(X) \to P(X)$ as the following: For $A \subseteq X$,

$$i_{\tau S}(A) = \bigcup \{ U \subseteq X : U \subseteq A, U \in \tau S \};$$

 $c_{\tau S}(A) = \bigcap \{ F \subseteq X : A \subseteq F, X - F \in \tau S \} :$

The following two theorems are obviously obtained from the definitions of operations $i_{\tau S}, c_{\tau S}$:

Theorem 3.7. Let (X, τ) be a topological space and S be a stack on X. For $A, B \subseteq X$

- (i) $i_{\tau S}(\emptyset) = \emptyset$.
- (ii) $i_{\tau S}(A) \subseteq A$.
- (iii) If $A \subseteq B$, then $i_{\tau S}(A) \subseteq i_{\tau S}(B)$.
- $(iv) i_{\tau S}(i_{\tau S}(A)) = i_{\tau S}(A).$

Theorem 3.8. Let (X, τ) be a topological space and S be a stack on X. For $A, B \subseteq X$

- (i) $c_{\tau S}(X) = X$.
- (ii) $A \subseteq c_{\tau S}(A)$.
- (iii) If $A \subseteq B$, then $c_{\tau S}(A) \subseteq c_{\tau S}(B)$.
- (iv) $c_{\tau S}(c_{\tau S}(A)) = c_{\tau S}(A)$.

Theorem 3.9. Let (X, τ) be a topological space and S be a stack on X. For $A \subseteq X$, A is τS -closed iff $\Psi_S(A) = A$.

Proof. A is τS -closed iff X-A is τS -open iff $\Psi_{S}(X-(X-A))=X-(X-A)$. So we have the statement. \square

Theorem 3.10. Let (X, τ) be a topological space and S be a stack on X. For $A \subseteq X$,

- (i) $x \in i_{\tau S}(A)$ iff there exists a τS -open set U containing x such that $U \subseteq A$.
- (ii) $x \in c_{\tau S}(A)$ iff for each τS -open set V containing $x, A \cap V \neq \emptyset$.

Proof. Obvious.

Theorem 3.11. Let (X, τ) be a topological space and S be a stack on X. If $x \in i_{\tau S}(A)$, then there exists some $W \in \tau(x)$ satisfying $A^c \cap W \notin S$.

Proof. For $x \in i_{\tau S}(A)$, by Theorem 3.10, there exists a τS -open set U containing x such that $U \subseteq A$. From $X - A \subseteq X - U = \Psi_S(X - U)$, we have $x \notin \varphi_S(X - U)$, and so there exists an open set W containing x such that $(X - U) \cap W \notin S$. Since S is a stack and $A^c \subset U^c$, we have $A^c \cap W \notin S$. \square

Theorem 3.12. Let (X,τ) be a topological space and S be a stack on X.

- (i) $c_{\tau S}(A) = \Psi_{S}(A)$ for $A \subseteq X$.
- (ii) If $A \notin \mathcal{S}$, then $X A \in \tau \mathcal{S}$ for $A \subseteq X$.
- (iii) $\varphi_{S}(A)$ is τS -closed for $A \subseteq X$.
- *Proof.* (i) First, by Theorem 3.2 (iv) and Theorem 3.9, $\Psi_{S}(A)$ is τS -closed. From $A \subseteq \Psi_{S}(A)$, it follows $A \subseteq c_{\tau S}(A) \subseteq \Psi_{S}(A)$.

Furthermore, since $A \subseteq c_{\tau S}(A)$, from Theorem 3.2(iii) and Theorem 3.9, it follows $\Psi_{S}(A) \subseteq \Psi_{S}(c_{\tau S}(A)) = c_{\tau S}(A)$. Consequently, $c_{\tau S}(A) = \Psi_{S}(A)$.

- (ii) If $A \notin \mathcal{S}$, then by Lemma 2.2, we know that $\varphi_{S}(A) = \emptyset$. So $\Psi_{S}(X (X A)) = \Psi_{S}(A) = A \cup \varphi_{S}(A) = A = X (X A)$. So $X A \in \tau \mathcal{S}$.
- (iii) For $A \subseteq X$, from Theorem 2.3 (iv), $\Psi_{S}(\varphi_{S}(A)) = \varphi_{S}(A) \cup \varphi_{S}(\varphi_{S}(A)) = \varphi_{S}(A)$. By Theorem 3.9, $\varphi_{S}(A)$ is $\tau \mathcal{S}$ -closed

Theorem 3.13. Let (X, τ) be a topological space and S be a stack on X. Then for $U \in \tau$ and $A \notin S$,

$$U - A \in \tau S$$
.

Proof. First, we show that $\varphi_{\mathbb{S}}(U^c \cup A) \subseteq U^c \cup A$ for $U \in \tau$ and $A \notin \mathcal{S}$. Assume $x \in \varphi_{\mathbb{S}}(U^c \cup A)$; then for every $G \in \tau(x)$, $G \cap (U^c \cup A) = (G \cap U^c) \cup (G \cap A) \in \mathcal{S}$. If there exists an open set $G \in \tau(x)$ such that $G \cap U^c = \emptyset$, since $G \cap A \in \mathcal{S}$ and \mathcal{S} is a stack, we have $A \in \mathcal{S}$. It contradicts to the fact $A \notin \mathcal{S}$. So $G \cap U^c \neq \emptyset$ for every $G \in \tau(x)$ and this implies $x \in cl(U^c) = U^c \subseteq U^c \cup A$. Hence $\varphi_{\mathbb{S}}(U^c \cup A) \subseteq U^c \cup A$ and from the fact, it follows $\Psi_{\mathbb{S}}(X - (U - A)) = X - (U - A) \cup \varphi_{\mathbb{S}}(X - (U - A)) = X - (U - A)$. Hence $U - A \in \tau \mathcal{S}$.

Theorem 3.14. Let (X, τ) be a topological space and S be a stack on X. For any $W \in \tau S$, $W = \cup (U - A)$ for $U \in \tau$ and $A \notin S$.

Proof. For any $W \in \tau S$, let $x \in W$. Then $\Psi_S(X - W) = (X - W) \cup \varphi_S(X - W) = X - W$ and $x \notin X - W$. So $x \notin \varphi_S(X - W)$ and there exists some $U \in \tau(x)$ such that $(X - W) \cap U \notin S$. Put $A = (X - W) \cap U$. Then $x \notin A$ and $A \notin S$. Moreover, we have $x \in U - A \subseteq W$. So the proof is completed. \square

Theorem 3.15. Let (X, τ) be a topological space and S be a stack on X. Then $\tau \subseteq \tau S$.

Proof. It is obvious from Theorem 3.14 and $\emptyset \notin S$.

References

- [1] A. Al-Omari, T. Noiri, On $\widetilde{\Psi}_{\mathsf{G}}$ -sets in grill topological spaces, *Filomat*, **25**, No. 2 (2011), 187-196.
- [2] G. Choquet, Sur les notions de filter et grill, Comptes Rendus Acad. Sci. Psris, 224 (1947), 171-173.
- [3] G. Grimeisen, Gefilterte summation von filtern and iterierte grenzproesse, *Math. Annalen I*, **141** (1960), 318-342.
- [4] K. Kuratowski, Topology, Volume 1, Academic Press, New York (1966).
- [5] B. Roy, M.N. Mukherjee, On a typical topology induced by a grill, *Soochow Journal of Mathematics*, **33**, No. 4 (2007), 771-786.
- [6] W.J. Thron, Proximity structures and grills, *Math. Ann.*, **206**, No. 4 (1973), 35-62.