International Journal of Pure and Applied Mathematics

Volume 80 No. 3 2012, 403-409

ISSN: 1311-8080 (printed version) url: http://www.ijpam.eu

LINEARLY INDEPENDENT SUBSETS OF EMBEDDED VARIETIES

E. Ballico

Department of Mathematics
University of Trento
38 123 Povo (Trento) - Via Sommarive, 14, ITALY
e-mail: ballico@science.unitn.it

Abstract: Let $X \subset \mathbb{P}^n$ be an integral and non-degenerate variety. Assume $m < n \leq 2m+1$. We prove that here is no zero-dimensional scheme $Z \subset X$ witht $\deg(Z) \leq 4$ and $\dim(\langle Z) \rangle \leq \deg(Z) - 2$ and and only if m=1, n=3 and X is a rational normal curve.

AMS Subject Classification: 14N05

Key Words: zero-dimensiona scheme, linear dependent zero-dimensional scheme

1. Introduction

Let $X \subseteq \mathbb{P}^n$ be an integral and non-degenerate variety defined over an algebraically closed field \mathbb{K} . We recall that a zero-dimensional scheme $Z \subset \mathbb{P}^n$ is said to be *curvilinear* if for each $P \in Z_{red}$ the Zariski tangent space of Z at P has dimension ≤ 1 . It is easy to check that Z is curvilinear if and only if it is contained in a smooth curve.

For any zero-dimensional scheme $Z \subset \mathbb{P}^n$ let $\langle Z \rangle$ denote the linear span of Z, i.e. the intersection of all hyperplanes of \mathbb{P}^n containing Z, with the convention $\langle Z \rangle = \mathbb{P}^n$ if there is no such a hyperplane. We prove the following result.

Received: July 14, 2012 © 2012 Academic Publications, Ltd. url: www.acadpubl.eu

E. Ballico

Theorem 1. Let $X \subset \mathbb{P}^n$ be an integral and non-degenerate variety. Assume $m < n \leq 2m + 1$. The following conditions are equivalent:

- (i) there is no zero-dimensional scheme $Z \subset X$ such that $\deg(Z) \leq 4$ and $\dim(\langle Z) \rangle \leq \deg(Z) 2$.
- (ii) there is no zero-dimensional scheme $Z \subset X$ such that $\deg(Z) = 4$ and $\dim(\langle Z) \rangle = 2$.
- (iii) There is no curvilinear zero-dimensional subscheme $Z \subset X$ such that $\deg(Z) \leq 4$ and $\dim(\langle Z) \rangle \leq \deg(Z) 2$.
- (iv) m = 1, n = 3 and X is a rational normal curve.

See

The inequality " $\dim(\langle Z)\rangle \leq \deg(Z)-2$ means that Z is not linearly independent. We give a class of examples (for any $m\geq 2$) in which X satisfies the following assertion \clubsuit :

♣ There is no set $E \subset X$ such that $\sharp(E) = 4$, $\dim(\langle E) \rangle \leq 2$, and $\langle E \rangle \cap X$ is zero-dimensional.

See Example 1) (each X is a cone over a curve). Of course, any cone contains many sets E with $\sharp(E)=4$ and E linearly dependent. The crucial part in \clubsuit is the condition that $\langle E\rangle\cap X$ contains no curve.

In this note we discuss the following definition (see [3], Lemma 2.1.5, and [2], Proposition 11, for the integer $\beta(X)$).

Notation 1. Let $X \subset \mathbb{P}^n$ be an integral and non-degenerate variety. Let $\beta(X)$ (resp. $\gamma(X)$, resp. $\eta(X)$) denote the maximal integer t such that any zero-dimensional scheme (resp. zero-dimensional and curvilinear, resp. finite set) $Z \subset X$ with $\deg(Z) \leq t$ is linearly independent, i.e. $\dim(\langle Z \rangle) = \deg(Z) - 1$. Let $\beta'(X)$ be the maximal integer t such that if $Z \subset X$ is a zero-dimensional scheme, $\deg(Z) \leq t$ and $\dim(\langle Z) \leq \deg(Z) - 2$, then $\langle Z \rangle \cap X$ contains a positive dimensional subvariety, with the convention $\beta'(X) = +\infty$ if there is no such integer. Define in the same way the integers $\gamma'(X)$ and $\eta'(X)$ using curvilinear schemes and finite sets, respectively.

Of course $\beta'(X) \geq \beta(X)$, $\gamma'(X) \geq \gamma(X)$, $\eta'(X) \geq \eta(X)$, $\beta(X) \leq \gamma(X) \leq \eta(X)$ and $\beta'(X) \leq \gamma'(X) \leq \eta'(X)$. If X is a smooth curve, then each zero-dimensional subscheme of X is curvilinear and hence $\gamma(X) = \beta(X)$. If X is a curve, then $\alpha'(X) = \alpha(X)$ for all $\alpha \in \{\beta, \gamma, \eta\}$. We prove the following result.

Proposition 1. Let $X \subset \mathbb{P}^n$ be an integral and non-degenerate subvariety. Set $m := \dim(X)$.

- (a) We have $\beta(X) \leq \gamma(X) \leq \eta(X) \leq n+2-m$.
- (b) We have $\beta(X) = n + 2 m$ if and only if $\eta(X) = n m + 2$ if and only if m = 1 and X is a rational normal curve.

Proposition 2. Let $X \subset \mathbb{P}^n$ be an integral and non-degenerate subvariety. Set $m := \dim(X)$.

We have $\beta'(X) = +\infty \Leftrightarrow \gamma'(X) = +\infty \Leftrightarrow \alpha'(X) = +\infty \Leftrightarrow \deg(X) = n - m + 1$.

2. The Proofs

Remark 1. Let $X \subset \mathbb{P}^n$ be a non-degenerate subvariety. If X is settheoretically cut out by quadrics, then $\beta'(X) \geq 3$.

Proof of Proposition 1. Part (a) is obvious if m=1. Now assume $m \geq 2$. Fix a general codimension m-1 linear subspace W of \mathbb{P}^n . By a characteristic free version of Bertini's theorem for quasi-projective schemes (see [6], pp. 66–67) the scheme $W \cap X$ is an integral curve spanning V. Hence $X \cap V$ contains at least n-m+3 points. Since $V \neq \mathbb{P}^n$, we have $\eta(X) \leq n+2-m$.

Now we prove part (b). Obviously $\beta(X) \leq \gamma(X) \leq \eta(X)$. For every zero-dimensional scheme $A \subset \mathbb{P}^1$ we have $h^0(\mathbb{P}^1, \mathcal{I}_A(n)) = \max\{0, n+1 - \deg(A)\}$ and $h^1(\mathbb{P}^1, \mathcal{I}_A(n)) = \max\{0, \deg(A) - n - 1\}$. Hence $\beta(X) = \eta(X) = n + 1$ if X is a rational normal curve. Hence the "if" part of Proposition 1 is true. Now we check the "only if" part.

First assume m=1. Set $d:=\deg(X)$. Assume $d\geq n+1$. Let $H\subset\mathbb{P}^n$ be a general hyperplane. Since $H\cap X$ contains d points and $d\geq \dim(H)+2$, we have $\beta(X)\leq \dim(H)=n-1$.

Now assume $m \geq 2$. Let $V \subset \mathbb{P}^n$ be a general linear subspace of codimension m-1. By the characteristic free part of Bertini's theorem for quasi-projective schemes (see [6], pp. 66–67) the scheme $V \cap X$ is an integral curve spanning V. Since $\dim(V) = n - m + 1$, we have $b\eta(X) \leq \beta(X \cap V) \leq n - m + 2$. Now assume $\eta(X) = n - m + 2$. The case m = 1 gives that $X \cap V$ is a rational normal curve. Hence $\deg(X) = n + 1 - m$, i.e. X is a minimal degree m-dimensional variety. All these varieties are described in [5]. First assume m = 2. Either n = 5 and X is a Veronese surface or X is a cone over a rational normal curve of \mathbb{P}^{n-1} or X is a ruled surface. Since X contains no line, then n = 5 and X is a Veronese surface, even this case is excluded. Now assume $m \geq 3$. Let $M \subset \mathbb{P}^n$ be a general linear subspace. Since $\beta(M \cap X) = n - m + 2$, n - m + 2 = 5 and $M \cap X$ is a Veronese surface.

406 E. Ballico

Hence X is a cone over a Veronese surface (see [5]). Hence X contains lines, a contradiction.

Lemma 1. Assume $\dim(X) = 1$.

- (a) We have $\beta'(X) = +\infty \Leftrightarrow \gamma'(X) = +\infty \Leftrightarrow \alpha'(X) = +\infty \Leftrightarrow X$ is a rational normal curve.
- (b). If X is not a rational normal curve, then $\beta'(X) = \beta(X)$, $\gamma'(X) = \gamma(X)$ and $\eta'(X) = \eta(X)$.

Proof. If X is a rational normal curve, then $\beta(X) = \gamma(X) = \eta(X) = n+1$ and hence $\beta'(X) = +\infty$, $\gamma'(X) = +\infty$ and $\eta'(X) = +\infty$. Now assume that X is not a rational normal curve. Proposition 1 gives $\beta(X) \leq n$, $\gamma(X) \leq n$ and $\eta(X) \leq n$. Hence to test $\beta(X)$, $\gamma(X)$ and $\alpha(X)$ we only need to check zero-dimensional schemes Z such that $\deg(Z) \leq n$ and hence $\langle Z \rangle \neq \mathbb{P}^n$. Hence $\langle Z \rangle \cap X$ is zero-dimensional.

Proof of Proposition 2. If m=1, then use Lemma 1. Now assume $m\geq 2$. Set $d:=\deg(X)$. Let $V\subset\mathbb{P}^n$ be a general codimension m-1 linear subspace. By a characteristic free version of Bertini's theorem for quasi-projective schemes (see [6], pp. 66–67, the scheme $X\cap V$ is an integral curve of degree d spanning V. If $d\neq n-m+1$, i.e. if $X\cap V$ is not a rational normal curve, then $\eta'(X\cap V)\neq +\infty$. Since $\beta'(X)\leq \gamma'(X)\leq \eta'(X)\leq \eta'(X\cap V)$, we get $\beta'(X)\neq +\infty$, $\gamma'(X)\neq +\infty$ and $\eta'(X)\neq +\infty$, if $d\neq n-m+1$. Now assume d=n-m+1, i.e. assume that X is a minimal degree subvariety. Apply [4], Theorem 2.2. \square

Proposition 3. Let $X \subset \mathbb{P}^n$ be an integral and non-degenerate subvariety. Set $m := \dim(X)$. If $2m + \gamma(X) \ge n + 3$ and $\gamma(X) \ge 3$, then X is smooth.

Proof. Assume $2m \geq n + \gamma(X) - 3$, $\gamma(X) \geq 3$ and the existence of $P \in \operatorname{Sing}(X)$. Let T_PX denote the Zariski tangent space of X at P. Since X is singular at P, T_PX is a linear subspace of dimension $\geq m+1$. Set $\rho:=\dim(T_PX)$. Fix a general $S \subset X$ such that $\sharp(S)=\gamma(X)-3$ and call V the linear span of T_PX and S. Since X is non-degenerate and S is general, we have $\dim(V) \geq \min\{n, \rho + \gamma(X) - 3\} \geq n + 1 - m$. Hence $X \cap V$ contains a curve. Hence there is $Q \in X \cap V$ such $Q \notin S \cup \{P\}$. For each line $L \subset T_PX$ with $P \in L$ either $L \subset T_PX \cap X$ or the zero-dimensional scheme $L \cap X$ contains P with multiplicity at least P. Hence the linear space P contains a curvilinear subscheme of P with degree at least P. Since P contains a curvilinear subscheme of P with degree at least P. Since P contains P contains a curvilinear subscheme of P with degree at least P. Since P contains P contains a curvilinear subscheme of P with degree at least P. Since P contains P contains a curvilinear subscheme of P with degree at least P.

Proposition 4. Let $X \subset \mathbb{P}^n$ be an integral and non-degenerate variety. Set $m := \dim(X)$. We have $\eta(X) \leq 2 \cdot \lceil (n+2)/(m+1) \rceil - 1$.

Proof. For each integer $z \geq 1$ let $\sigma_z(X)$ denote the closure in \mathbb{P}^n of the union of all (z-1)-dimensional linear subspaces spanned by z points of X. Set $z := \lceil (n+2)/(m+1) \rceil$. First assume $\sigma_z(X) = \mathbb{P}^n$. A dimensional count gives that for a general $P \in \mathbb{P}^n$ there are infinitely many (z-1)-dimensional linear subspaces spanned by z points of X. Fix two of them, say $\langle A \rangle$ and $\langle B \rangle$ with $A \subset X$, $B \subset X$, $\sharp(A) = \sharp(B) = z$ and $\langle A \rangle \neq \langle$. For general P we may also find these linear spaces with $A \cap B = \emptyset$ (again, a dimensional count). Hence $\sharp(A \cup B) = 2z$. Since $P \in \langle A \rangle \cap \langle B \rangle$, we have $\dim(\langle A \rangle \cap \langle B \rangle) \leq 2z - 2$. Hence $\eta(X) \leq 2 \cdot \lceil (n+2)/(m+1) \rceil - 1$. Now assume $\sigma_z(X) \neq \mathbb{P}^n$. Hence $\sigma_z(X)$ is an integral variety, but not with the expected dimension. For a general $P \in \sigma_z(X)$ there are infinitely many (z-1)-dimensional linear subspaces spanned by z points of X. Any two of them give $\eta(X) \leq 2 \cdot \lceil (n+2)/(m+1) \rceil - 1$.

Proof of Theorem 1. Of course, (i) \Rightarrow (ii), but since X is non-degenerate also the implication (ii) \Rightarrow (i) is obvious. Obviously (i) \Rightarrow (iii). Let $Sec(X) \subseteq \mathbb{P}^n$ denote the secant variety of X.

- (a) If m=1, then use Lemma 1. From now on we assume $m\geq 2$.
- (b) In this step and in step (d) we assume n = 2m+1 and $\operatorname{Sec}(X) = \mathbb{P}^{2m+1}$. Fix a general $Q \in \mathbb{P}^{2m+1}$. A dimensional count gives the existence of finitely many, say k, lines $L \subset \mathbb{P}^{2m+1}$ such that $Q \in L$ and $\sharp(X \cap L) \geq 2$; moreover $\deg(L \cap X) = 2$ for all such L and $L \cap \operatorname{Sing}(X) = \emptyset$. First assume $k \geq 2$ and call L, L' any two such lines and V the plane spanned by $L \cup L'$. Since V is spanned by 4 points of X, (iii) is not satisfied.
- (c) In this step we assume $\dim(\operatorname{Sec}(X)) \leq 2m$ (this is always the case if $n \leq 2m+1$). Hence $\operatorname{Sec}(X)$ is an irreducible variety of dimension $\rho \leq 2m$. Fix a general $P \in \operatorname{Sec}(X)$. Since $\rho > m$, then $P \notin X$. Fix a hyperplane $H \subset \mathbb{P}^{2m+1}$ such that $P \notin H$. The set of all lines $L \subset \mathbb{P}^{2m+1}$ A dimensional count gives the existence of an $(2m+1-\rho)$ -dimensional quasi-projective variety $T \subset H$ such that each line L_t , $t \in T$, we have $P \in L_t$ and $\sharp(L_t \cap X) \geq 2$. Fix a general $(t,s) \in T \times T$. Since $L_t \neq L_s$ and $P \in L_s \cap L_t$, $L_s \cup L_t$ spans a plane, V. By construction V contains at least 4 non-collinear points. Hence (iii) is not satisfied.
- (d) In this step we assume n=2m+1, $\operatorname{Sec}(X)=\mathbb{P}^{2m+1}$ and that a general point of \mathbb{P}^{2m+1} is contained in a unique secant line of X. Proposition 3 gives that X is smooth. Fix $O \in X$ and assume the existence of $Q \in X \cap T_OX$ such

408 E. Ballico

that $Q \neq O$. The line $\langle \{O, Q\} \rangle$ contains O with multiplicity at least 2. Hence either $L \subseteq X$ or $\deg(L \cap X) \geq 3$. Hence (iii) is not satisfied. Fix $O \in X$. Let $\ell: \mathbb{P}^{2m+1} \setminus T_O X \to \mathbb{P}^m$ denote the linear projection from $T_P X$. Since $T_OX \cap (X \setminus \{O\}) = \emptyset$, ℓ induces a morphism $f: X \setminus \{O\} \to \mathbb{P}^m$. For any $Q \in (X \setminus \{O\})$ set $V_Q := \langle T_O X \cup \{Q\} \rangle$. Each V_Q has dimension m+1. Assume that $V_O \cap X$ is a scheme containing a zero-dimensional scheme $Z \subset V_O \setminus \{O\}$ with $\deg(Z) \geq 2$. Fix $W \subseteq Z$ with $\deg(W) = 2$. Set $L := \langle W \rangle$. Since L is a line contained in V_Q and T_QX is a hyperplane of V_Q , the set $L \cap T_QX$ contains at least one point, P. First assume P = O. In this case $\deg(L \cap X) \geq 4$, because $L \cap X$ contains O with multiplicity at least 2 and the degree 2 scheme W, (iii) is not satisfied. Now assume $P \neq O$. Set $M := \langle \{P, O\} \rangle$. M is a line and $M \cap X$ contains O with multiplicity at least two. Hence the plane $\langle L \cup M \rangle$ contains a degree 4 zero-dimensional subscheme of X. Hence (i) is not satisfied, a contradiction. We just proved that for each $Q \in X \setminus \{0\}$ the scheme $V_Q \cap (X \setminus \{O\})$ is the set $\{Q\}$ with its reduced structure. Hence $f: X \setminus \{O\} \to \mathbb{P}^m$ is injective and unramified, i.e. an open embedding. Since $m \geq 2$ and O is a smooth point of X, f extends to a morphism $\phi: X \to \mathbb{P}^m$. Both X and \mathbb{P}^n are smooth. Since $\phi(X \setminus \{O\})$ has invertible differential, ϕ has invertible differential. Since $X\setminus\{O\}$ is injective, ϕ is finite. We get that ϕ is an isomorphism. Since ϕ is induced by a linear projection, we have $\phi^*(\mathcal{O}_{\mathbb{P}^m}(1))|X \cong \mathcal{O}_X(1)|(X \setminus \{O\})$. Since X is smooth and $m \geq 2$, we get $\mathcal{O}_X(1) \cong \phi^*(\mathcal{O}_{\mathbb{P}^m}(1))$. Hence $h^0(X, \mathcal{O}_X(1)) = m+1$. Hence X is degenerate, a contradiction.

Example 1. Fix an integer $m \geq 2$. Let $Y \subset \mathbb{P}^{m+2}$ be an integral and non degenerate curve such that $\dim(\langle E \rangle) = \sharp(E) - 1$ for each finite set $E \subset Y$ with $\sharp(E) \leq 4$ and that Y is scheme-theoretically cut-out by quadrics. For instance, we may take as Y any linearly normal curve of arithmetic genus qand degree q+m+2 if $q+m+2-4 \ge 2q-1$, i.e. if $q \le m-1$. See \mathbb{P}^{m+2} as a linear subspace M of \mathbb{P}^{2m+1} . Take an (m-2)-dimensional linear subspace $W \subset \mathbb{P}^{2m+1}$ such that $W \cap M = \emptyset$. Let X be the cone with vertex W and Y as a basis. We will check that \clubsuit is not satisfied. Since X is scheme-theoretically cut out by quadrics, every line $L \subset \mathbb{P}^{2m+1}$ containing a degree 3 zero-dimensional subscheme of X is contained in X. Let $E \subset X$ be a finite set such that $\sharp(E) = 4$ and assume that $\langle E \rangle$ is a plane and that $\langle E \rangle \cap X$ is zero-dimensional. Hence $\langle E \rangle \cap W$ is either empty or a point. First assume $\langle E \rangle \cap W = \emptyset$. The linear projection from W induces an isomorphism of E onto a set $E' \subset Y$ such that $\sharp(E')=4$ and $\dim(\langle E'\rangle)=2$, contradicting our choice of Y. Now assume that the linear space $\langle E \rangle \cap W$ is a point, O. Let $R \subset M$ be the image of $\langle E \rangle \setminus \{O\}$ by the linear projection from W. R is a line containing the image E'' of $E \setminus \{O\}$.

Our assumption on Y gives $\sharp(E'') \leq 2$. We easily see that $\langle E \rangle$ contains a line spanned by O and a point of E''. Hence $\langle E \rangle \cap X$ contains a line.

Acknowledgements

The author was partially supported by MIUR and GNSAGA of INdAM (Italy).

References

- [1] B. Ådlandsvik, Joins and higher secant varieties, *Math. Scand.*, **61** (1987), 213-222.
- [2] A. Bernardi, A. Gimigliano, M. Idà, On the stratification of secant varieties of Veronese varieties via symmetric rank, *J. Symbolic. Comput.*, **46**, No. 1 (2011), 34-53.
- [3] J. Buczyński, A. Ginensky, J. M. Landsberg, Determinantal equations for secant varieties and the Eisenbud-Koh-Stillman conjecture, *ArXiv*: 1007.0192v3 [math.AG].
- [4] D. Eisenbud, M. Green, K. Hulek, S. Popescu, Small schemes and varieties of minimal degree, *Amer. J. Math.*, **128**, No. 6 (2006), 1363-1389.
- [5] D. Eisenbud, J. Harris, On varieties of minimal degree (a centennial account), Algebraic Geometry, Bowdoin (1985), Brunswick, Maine, 3-13; Proc. Sympos. Pure Math., 46, Part 1, Amer. Math. Soc., Providence, RI (1987).
- [6] J.-P. Jouanolou, *Théorèmes de Bertini et Applications*, Progress in Mathematics, **42**, Birkhäuser Boston, Inc., Boston, MA (1983).
- [7] J. Rathmann, The uniform position principle for curves in characteristic p, Math. Ann., 276, No. 4 (1987), 565-579.