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Abstract: Let X ⊂ P
n be an integral and non-degenerate variety. Assume

m < n ≤ 2m + 1. We prove that here is no zero-dimensional scheme Z ⊂ X
witht deg(Z) ≤ 4 and dim(〈Z)〉 ≤ deg(Z) − 2 and and only if m = 1, n = 3
and X is a rational normal curve.
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1. Introduction

Let X ⊆ P
n be an integral and non-degenerate variety defined over an alge-

braically closed field K. We recall that a zero-dimensional scheme Z ⊂ P
n is

said to be curvilinear if for each P ∈ Zred the Zariski tangent space of Z at P
has dimension ≤ 1. It is easy to check that Z is curvilinear if and only if it is
contained in a smooth curve.

For any zero-dimensional scheme Z ⊂ P
n let 〈Z〉 denote the linear span of Z,

i.e. the intersection of all hyperplanes of Pn containing Z, with the convention
〈Z〉 = P

n if there is no such a hyperplane. We prove the following result.
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Theorem 1. Let X ⊂ P
n be an integral and non-degenerate variety.

Assume m < n ≤ 2m+ 1. The following conditions are equivalent:

(i) there is no zero-dimensional scheme Z ⊂ X such that deg(Z) ≤ 4 and
dim(〈Z)〉 ≤ deg(Z)− 2.

(ii) there is no zero-dimensional scheme Z ⊂ X such that deg(Z) = 4 and
dim(〈Z)〉 = 2.

(iii) There is no curvilinear zero-dimensional subscheme Z ⊂ X such that
deg(Z) ≤ 4 and dim(〈Z)〉 ≤ deg(Z)− 2.

(iv) m = 1, n = 3 and X is a rational normal curve.

See
The inequality “ dim(〈Z)〉 ≤ deg(Z)− 2 means that Z is not linearly inde-

pendent. We give a class of examples (for any m ≥ 2) in which X satisfies the
following assertion ♣:

♣ There is no set E ⊂ X such that ♯(E) = 4, dim(〈E)〉 ≤ 2, and 〈E〉 ∩X
is zero-dimensional.

See Example 1) (each X is a cone over a curve). Of course, any cone contains
many sets E with ♯(E) = 4 and E linearly dependent. The crucial part in ♣ is
the condition that 〈E〉 ∩X contains no curve.

In this note we discuss the following definition (see [3], Lemma 2.1.5, and
[2], Proposition 11, for the integer β(X)).

Notation 1. Let X ⊂ P
n be an integral and non-degenerate variety. Let

β(X) (resp. γ(X), resp. η(X)) denote the maximal integer t such that any
zero-dimensional scheme (resp. zero-dimensional and curvilinear, resp. finite
set) Z ⊂ X with deg(Z) ≤ t is linearly independent, i.e. dim(〈Z〉) = deg(Z)−1.
Let β′(X) be the maximal integer t such that if Z ⊂ X is a zero-dimensional
scheme, deg(Z) ≤ t and dim(〈Z) ≤ deg(Z)−2, then 〈Z〉∩X contains a positive
dimensional subvariety, with the convention β′(X) = +∞ if there is no such
integer. Define in the same way the integers γ′(X) and η′(X) using curvilinear
schemes and finite sets, respectively.

Of course β′(X) ≥ β(X), γ′(X) ≥ γ(X), η′(X) ≥ η(X), β(X) ≤ γ(X) ≤
η(X) and β′(X) ≤ γ′(X) ≤ η′(X). If X is a smooth curve, then each zero-
dimensional subscheme of X is curvilinear and hence γ(X) = β(X). If X is a
curve, then α′(X) = α(X) for all α ∈ {β, γ, η}. We prove the following result.

Proposition 1. Let X ⊂ P
n be an integral and non-degenerate subvariety.

Set m := dim(X).
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(a) We have β(X) ≤ γ(X) ≤ η(X) ≤ n+ 2−m.

(b) We have β(X) = n+2−m if and only if η(X) = n−m+2 if and only
if m = 1 and X is a rational normal curve.

Proposition 2. Let X ⊂ P
n be an integral and non-degenerate subvariety.

Set m := dim(X).

We have β′(X) = +∞ ⇔ γ′(X) = +∞ ⇔ α′(X) = +∞ ⇔ deg(X) =
n−m+ 1.

2. The Proofs

Remark 1. Let X ⊂ P
n be a non-degenerate subvariety. If X is set-

theoretically cut out by quadrics, then β′(X) ≥ 3.

Proof of Proposition 1. Part (a) is obvious if m = 1. Now assume m ≥ 2.
Fix a a general codimension m−1 linear subspace W of Pn. By a characteristic
free version of Bertini’s theorem for quasi-projective schemes (see [6], pp. 66–
67) the scheme W ∩X is an integral curve spanning V . Hence X ∩ V contains
at least n−m+ 3 points. Since V 6= P

n, we have η(X) ≤ n+ 2−m.

Now we prove part (b). Obviously β(X) ≤ γ(X) ≤ η(X). For every zero-
dimensional scheme A ⊂ P

1 we have h0(P1,IA(n)) = max{0, n + 1 − deg(A)}
and h1(P1,IA(n)) = max{0,deg(A)−n− 1}. Hence β(X) = η(X) = n+1 if X
is a rational normal curve. Hence the “ if ” part of Proposition 1 is true. Now
we check the “ only if ” part.

First assume m = 1. Set d := deg(X). Assume d ≥ n+ 1. Let H ⊂ P
n be

a general hyperplane. Since H ∩X contains d points and d ≥ dim(H) + 2, we
have β(X) ≤ dim(H) = n− 1.

Now assumem ≥ 2. Let V ⊂ P
n be a general linear subspace of codimension

m− 1. By the characteristic free part of Bertini’s theorem for quasi-projective
schemes (see [6], pp. 66–67) the scheme V ∩ X is an integral curve spanning
V . Since dim(V ) = n −m+ 1, we have bη(X) ≤ β(X ∩ V ) ≤ n−m+ 2. Now
assume η(X) = n−m+2. The case m = 1 gives that X∩V is a rational normal
curve. Hence deg(X) = n + 1 −m, i.e. X is a minimal degree m-dimensional
variety. All these varieties are described in [5]. First assume m = 2. Either
n = 5 and X is a Veronese surface or X is a cone over a rational normal curve
of Pn−1 or X is a ruled surface. Since X contains no line, then n = 5 and X is
a Veronese surface. Since β(X) = 4 if X is a Veronese surface, even this case
is excluded. Now assume m ≥ 3. Let M ⊂ P

n be a general linear subspace.
Since β(M ∩X) = n−m+2, n−m+2 = 5 and M ∩X is a Veronese surface.
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Hence X is a cone over a Veronese surface (see [5]). Hence X contains lines, a
contradiction.

Lemma 1. Assume dim(X) = 1.

(a) We have β′(X) = +∞ ⇔ γ′(X) = +∞ ⇔ α′(X) = +∞ ⇔ X is a
rational normal curve.

(b). If X is not a rational normal curve, then β′(X) = β(X), γ′(X) = γ(X)
and η′(X) = η(X).

Proof. If X is a rational normal curve, then β(X) = γ(X) = η(X) = n+1
and hence β′(X) = +∞, γ′(X) = +∞ and η′(X) = +∞. Now assume that
X is not a rational normal curve. Proposition 1 gives β(X) ≤ n, γ(X) ≤ n
and η(X) ≤ n. Hence to test β(X), γ(X) and α(X) we only need to check
zero-dimensional schemes Z such that deg(Z) ≤ n and hence 〈Z〉 6= P

n. Hence
〈Z〉 ∩X is zero-dimensional.

Proof of Proposition 2. If m = 1, then use Lemma 1. Now assume m ≥ 2.
Set d := deg(X). Let V ⊂ P

n be a general codimension m− 1 linear subspace.
By a characteristic free version of Bertini’s theorem for quasi-projective schemes
(see [6], pp. 66–67, the scheme X ∩ V is an integral curve of degree d spanning
V . If d 6= n − m + 1, i.e. if X ∩ V is not a rational normal curve, then
η′(X ∩ V ) 6= +∞. Since β′(X) ≤ γ′(X) ≤ η′(X) ≤ η′(X ∩ V ), we get β′(X) 6=
+∞, γ′(X) 6= +∞ and η′(X) 6= +∞, if d 6= n−m+1. Now assume d = n−m+1,
i.e. assume that X is a minimal degree subvariety. Apply [4], Theorem 2.2.

Proposition 3. Let X ⊂ P
n be an integral and non-degenerate subvariety.

Set m := dim(X). If 2m+ γ(X) ≥ n+ 3 and γ(X) ≥ 3, then X is smooth.

Proof. Assume 2m ≥ n + γ(X) − 3, γ(X) ≥ 3 and the existence of P ∈
Sing(X). Let TPX denote the Zariski tangent space of X at P . Since X is
singular at P , TPX is a linear subspace of dimension ≥ m + 1. Set ρ :=
dim(TPX). Fix a general S ⊂ X such that ♯(S) = γ(X) − 3 and call V the
linear span of TPX and S. Since X is non-degenerate and S is general, we have
dim(V ) ≥ min{n, ρ+ γ(X) − 3} ≥ n + 1−m. Hence X ∩ V contains a curve.
Hence there is Q ∈ X ∩ V such Q /∈ S ∪ {P}. For each line L ⊂ TPX with
P ∈ L either L ⊂ TPX ∩X or the zero-dimensional scheme L ∩X contains P
with multiplicity at least 2. Hence the linear space 〈{P,Q} ∪ S}〉 contains a
curvilinear subscheme of X with degree at least γ(X). Since dim(〈{P,Q, } ∪
S〉 ≤ ♯(S) + 1 = γ(X) − 2, we get a contradiction.
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Proposition 4. Let X ⊂ P
n be an integral and non-degenerate variety.

Set m := dim(X). We have η(X) ≤ 2 · ⌈(n + 2)/(m+ 1)⌉ − 1.

Proof. For each integer z ≥ 1 let σz(X) denote the closure in P
n of the

union of all (z− 1)-dimensional linear subspaces spanned by z points of X. Set
z := ⌈(n + 2)/(m + 1)⌉. First assume σz(X) = P

n. A dimensional count gives
that for a general P ∈ P

n there are infinitely many (z − 1)-dimensional linear
subspaces spanned by z points of X. Fix two of them, say 〈A〉 and 〈B〉 with
A ⊂ X, B ⊂ X, ♯(A) = ♯(B) = z and 〈A〉 6= 〈. For general P we may also
find these linear spaces with A ∩ B = ∅ (again, a dimensional count). Hence
♯(A ∪B) = 2z. Since P ∈ 〈A〉 ∩ 〈B〉, we have dim(〈A〉 ∩ 〈B〉) ≤ 2z − 2. Hence
η(X) ≤ 2 · ⌈(n+2)/(m+1)⌉− 1. Now assume σz(X) 6= P

n. Hence σz(X) is an
integral variety, but not with the expected dimension. For a general P ∈ σz(X)
there are infinitely many (z − 1)-dimensional linear subspaces spanned by z
points of X. Any two of them give η(X) ≤ 2 · ⌈(n+ 2)/(m + 1)⌉ − 1.

Proof of Theorem 1. Of course, (i)⇒ (ii), but sinceX is non-degenerate also
the implication (ii) ⇒ (i) is obvious. Obviously (i) ⇒ (iii). Let Sec(X) ⊆ P

n

denote the secant variety of X.

(a) If m = 1, then use Lemma 1. From now on we assume m ≥ 2.

(b) In this step and in step (d) we assume n = 2m+1 and Sec(X) = P
2m+1.

Fix a general Q ∈ P
2m+1. A dimensional count gives the existence of finitely

many, say k, lines L ⊂ P
2m+1 such that Q ∈ L and ♯(X ∩ L) ≥ 2; moreover

deg(L ∩X) = 2 for all such L and L ∩ Sing(X) = ∅. First assume k ≥ 2 and
call L,L′ any two such lines and V the plane spanned by L ∪ L′. Since V is
spanned by 4 points of X, (iii) is not satisfied.

(c) In this step we assume dim(Sec(X)) ≤ 2m (this is always the case if
n ≤ 2m+1). Hence Sec(X) is an irreducible variety of dimension ρ ≤ 2m. Fix
a general P ∈ Sec(X). Since ρ > m, then P /∈ X. Fix a hyperplane H ⊂ P

2m+1

such that P /∈ H. The set of all lines L ⊂ P
2m+1 A dimensional count gives

the existence of an (2m + 1 − ρ)-dimensional quasi-projective variety T ⊂ H
such that each line Lt, t ∈ T , we have P ∈ Lt and ♯(Lt ∩X) ≥ 2. Fix a general
(t, s) ∈ T × T . Since Lt 6= Ls and P ∈ Ls ∩ Lt, Ls ∪ Lt spans a plane, V .
By construction V contains at least 4 non-collinear points. Hence (iii) is not
satisfied.

(d) In this step we assume n = 2m+1, Sec(X) = P
2m+1 and that a general

point of P2m+1 is contained in a unique secant line of X. Proposition 3 gives
that X is smooth. Fix O ∈ X and assume the existence of Q ∈ X ∩ TOX such
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that Q 6= O. The line 〈{O,Q}〉 contains O with multiplicity at least 2. Hence
either L ⊆ X or deg(L ∩ X) ≥ 3. Hence (iii) is not satisfied. Fix O ∈ X.
Let ℓ : P

2m+1 \ TOX → P
m denote the linear projection from TPX. Since

TOX ∩ (X \ {O}) = ∅, ℓ induces a morphism f : X \ {O} → P
m. For any

Q ∈ (X \{O}) set VQ := 〈TOX ∪{Q}〉. Each VQ has dimension m+1. Assume
that VQ ∩X is a scheme containing a zero-dimensional scheme Z ⊂ VQ \ {O}
with deg(Z) ≥ 2. Fix W ⊆ Z with deg(W ) = 2. Set L := 〈W 〉. Since L is a
line contained in VQ and TOX is a hyperplane of VQ, the set L∩TOX contains
at least one point, P . First assume P = O. In this case deg(L ∩ X) ≥ 4,
because L ∩X contains O with multiplicity at least 2 and the degree 2 scheme
W , (iii) is not satisfied. Now assume P 6= O. Set M := 〈{P,O}〉. M is a
line and M ∩ X contains O with multiplicity at least two. Hence the plane
〈L ∪ M〉 contains a degree 4 zero-dimensional subscheme of X. Hence (i) is
not satisfied, a contradiction. We just proved that for each Q ∈ X \ {O}
the scheme VQ ∩ (X \ {O}) is the set {Q} with its reduced structure. Hence
f : X \ {O} → P

m is injective and unramified, i.e. an open embedding. Since
m ≥ 2 and O is a smooth point of X, f extends to a morphism φ : X → P

m.
Both X and P

n are smooth. Since φ|(X \ {O}) has invertible differential,
φ has invertible differential. Since X \ {O} is injective, φ is finite. We get
that φ is an isomorphism. Since φ is induced by a linear projection, we have
φ∗(OPm(1))|X ∼= OX(1)|(X \ {O}). Since X is smooth and m ≥ 2, we get
OX(1) ∼= φ∗(OPm(1)). Hence h0(X,OX(1)) = m+ 1. Hence X is degenerate, a
contradiction.

Example 1. Fix an integer m ≥ 2. Let Y ⊂ P
m+2 be an integral and

non degenerate curve such that dim(〈E〉) = ♯(E) − 1 for each finite set E ⊂ Y
with ♯(E) ≤ 4 and that Y is scheme-theoretically cut-out by quadrics. For
instance, we may take as Y any linearly normal curve of arithmetic genus q
and degree q +m + 2 if q + m + 2 − 4 ≥ 2q − 1, i.e. if q ≤ m − 1. See P

m+2

as a linear subspace M of P2m+1. Take an (m− 2)-dimensional linear subspace
W ⊂ P

2m+1 such that W ∩M = ∅. Let X be the cone with vertex W and Y as a
basis. We will check that ♣ is not satisfied. Since X is scheme-theoretically cut
out by quadrics, every line L ⊂ P

2m+1 containing a degree 3 zero-dimensional
subscheme of X is contained in X. Let E ⊂ X be a finite set such that ♯(E) = 4
and assume that 〈E〉 is a plane and that 〈E〉 ∩X is zero-dimensional. Hence
〈E〉 ∩ W is either empty or a point. First assume 〈E〉 ∩ W = ∅. The linear
projection from W induces an isomorphism of E onto a set E′ ⊂ Y such that
♯(E′) = 4 and dim(〈E′〉) = 2, contradicting our choice of Y . Now assume that
the linear space 〈E〉∩W is a point, O. Let R ⊂ M be the image of 〈E〉\{O} by
the linear projection from W . R is a line containing the image E′′ of E \ {O}.
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Our assumption on Y gives ♯(E′′) ≤ 2. We easily see that 〈E〉 contains a line
spanned by O and a point of E′′. Hence 〈E〉 ∩X contains a line.
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