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Abstract: Let X C P" be an integral and non-degenerate variety. Assume
m < n < 2m 4+ 1. We prove that here is no zero-dimensional scheme Z C X
witht deg(Z) < 4 and dim((Z)) < deg(Z) — 2 and and only if m =1, n = 3
and X is a rational normal curve.
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1. Introduction

Let X C P™ be an integral and non-degenerate variety defined over an alge-
braically closed field K. We recall that a zero-dimensional scheme Z C P" is
said to be curvilinear if for each P € Z,.4 the Zariski tangent space of Z at P
has dimension < 1. It is easy to check that Z is curvilinear if and only if it is
contained in a smooth curve.

For any zero-dimensional scheme Z C P" let (Z) denote the linear span of Z,
i.e. the intersection of all hyperplanes of P" containing Z, with the convention
(Z) = P™ if there is no such a hyperplane. We prove the following result.
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Theorem 1. Let X C P" be an integral and non-degenerate variety.
Assume m < n < 2m + 1. The following conditions are equivalent:

(1) there is no zero-dimensional scheme Z C X such that deg(Z) < 4 and
dim((2)) < deg(Z) — 2.

(ii) there is no zero-dimensional scheme Z C X such that deg(Z) = 4 and
dim((Z)) = 2.

(iii) There is no curvilinear zero-dimensional subscheme Z C X such that
deg(Z) < 4 and dim((Z)) < deg(Z) — 2.

(iv) m =1, n =3 and X is a rational normal curve.

See

The inequality “ dim((Z)) < deg(Z) — 2 means that Z is not linearly inde-
pendent. We give a class of examples (for any m > 2) in which X satisfies the
following assertion é:

& There is no set £ C X such that §(£) = 4, dim((E)) < 2, and (F) N X
is zero-dimensional.

See Example 1) (each X is a cone over a curve). Of course, any cone contains
many sets E with §(F) = 4 and E linearly dependent. The crucial part in & is
the condition that (F) N X contains no curve.

In this note we discuss the following definition (see [3], Lemma 2.1.5, and
[2], Proposition 11, for the integer 5(X)).

Notation 1. Let X C P™ be an integral and non-degenerate variety. Let
B(X) (resp. v(X), resp. n(X)) denote the maximal integer ¢ such that any
zero-dimensional scheme (resp. zero-dimensional and curvilinear, resp. finite
set) Z C X with deg(Z) < tis linearly independent, i.e. dim((Z)) = deg(Z)—1.
Let /(X) be the maximal integer ¢ such that if Z C X is a zero-dimensional
scheme, deg(Z) < t and dim((Z) < deg(Z)—2, then (Z)N X contains a positive
dimensional subvariety, with the convention '(X) = +oo if there is no such
integer. Define in the same way the integers 7/(X) and n/(X) using curvilinear
schemes and finite sets, respectively.

Of course #/(X) > B(X), 7(X) 2 7(X). of(X) = n(X), AX) < 1(X) <
n(X) and #'(X) < +/(X) < 7/(X). If X is a smooth curve, then each zero-

dimensional subscheme of X is curvilinear and hence y(X) = g(X). If X is a
curve, then o/ (X) = a(X) for all « € {53,7,n}. We prove the following result.

Proposition 1. Let X C P" be an integral and non-degenerate subvariety.
Set m := dim(X).
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(a) We have B(X) < vy(X) <n(X)<n+2-—m.

(b) We have B(X) =n+2—m if and only if n(X) =n —m+ 2 if and only
if m =1 and X is a rational normal curve.

Proposition 2. Let X C P" be an integral and non-degenerate subvariety.
Set m := dim(X).

We have B'(X) = +00 & 7/(X) = +00 & o/ (X) = +00 & deg(X) =
n—m+ 1.

2. The Proofs

Remark 1. Let X C P"™ be a non-degenerate subvariety. If X is set-
theoretically cut out by quadrics, then 5/(X) > 3.

Proof of Proposition 1. Part (a) is obvious if m = 1. Now assume m > 2.
Fix a a general codimension m — 1 linear subspace W of P". By a characteristic
free version of Bertini’s theorem for quasi-projective schemes (see [6], pp. 66—
67) the scheme W N X is an integral curve spanning V. Hence X NV contains
at least n —m + 3 points. Since V' # P", we have n(X) <n +2 —m.

Now we prove part (b). Obviously 5(X) < v(X) < n(X). For every zero-
dimensional scheme A C P! we have h°(P!,Z4(n)) = max{0,n + 1 — deg(A)}
and h!(P,Z4(n)) = max{0,deg(A4) —n—1}. Hence B(X) = n(X) =n+1if X
is a rational normal curve. Hence the “if 7 part of Proposition 1 is true. Now
we check the “ only if ” part.

First assume m = 1. Set d := deg(X). Assume d > n+ 1. Let H C P" be
a general hyperplane. Since H N X contains d points and d > dim(H) + 2, we
have f(X) < dim(H) =n — 1.

Now assume m > 2. Let V' C P" be a general linear subspace of codimension
m — 1. By the characteristic free part of Bertini’s theorem for quasi-projective
schemes (see [6], pp. 66—67) the scheme V N X is an integral curve spanning
V. Since dim(V) =n —m + 1, we have bn(X) < (X NV) <n—m + 2. Now
assume 7(X) = n—m+2. The case m = 1 gives that XNV is a rational normal
curve. Hence deg(X) =n+ 1 —m, i.e. X is a minimal degree m-dimensional
variety. All these varieties are described in [5]. First assume m = 2. Either
n =5 and X is a Veronese surface or X is a cone over a rational normal curve
of P"~! or X is a ruled surface. Since X contains no line, then n = 5 and X is
a Veronese surface. Since 3(X) = 4 if X is a Veronese surface, even this case
is excluded. Now assume m > 3. Let M C P" be a general linear subspace.
Since S(M NX)=n—m+2,n—m+2=>5and M NX is a Veronese surface.
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Hence X is a cone over a Veronese surface (see [5]). Hence X contains lines, a
contradiction. O

Lemma 1. Assume dim(X) = 1.

(a) We have f'(X) = 400 & 7/(X) = 400 & /(X)) = 40 & X is a
rational normal curve.

(b). If X is not a rational normal curve, then §'(X) = 5(X), v (X) = v(X)
and 1 (X) = n(X).

Proof. If X is a rational normal curve, then 3(X) = y(X) =n(X) =n+1
and hence /(X)) = 400, 7(X) = 400 and 7/(X) = 400. Now assume that
X is not a rational normal curve. Proposition 1 gives S(X) < n, v(X) < n
and n(X) < n. Hence to test (X), v(X) and «(X) we only need to check
zero-dimensional schemes Z such that deg(Z) < n and hence (Z) # P™. Hence
(Z) N X is zero-dimensional. O

Proof of Proposition 2. If m = 1, then use Lemma 1. Now assume m > 2.
Set d := deg(X). Let V C P" be a general codimension m — 1 linear subspace.
By a characteristic free version of Bertini’s theorem for quasi-projective schemes
(see [6], pp. 6667, the scheme X NV is an integral curve of degree d spanning
V. Ifd #n—m+1, ie. if X NV is not a rational normal curve, then
7' (X NV) # +oo. Since A'(X) <+'(X) <7'(X) <7'(X NV), we get §'(X) #
+00, V(X)) # +oo and /(X)) # +o0, if d # n—m+1. Now assume d = n—m+1,
i.e. assume that X is a minimal degree subvariety. Apply [4], Theorem 2.2. [

Proposition 3. Let X C P" be an integral and non-degenerate subvariety.
Set m = dim(X). If 2m +v(X) > n+ 3 and v(X) > 3, then X is smooth.

Proof. Assume 2m > n + vy(X) — 3, v(X) > 3 and the existence of P €
Sing(X). Let TpX denote the Zariski tangent space of X at P. Since X is
singular at P, TpX is a linear subspace of dimension > m + 1. Set p =
dim(TpX). Fix a general S C X such that §(S) = v(X) — 3 and call V the
linear span of TpX and S. Since X is non-degenerate and S is general, we have
dim(V) > min{n,p +vy(X) —3} > n+1—m. Hence X NV contains a curve.
Hence there is Q € X NV such @ ¢ S U{P}. For each line L C TpX with
P € L either L C TpX N X or the zero-dimensional scheme L N X contains P
with multiplicity at least 2. Hence the linear space ({P,Q} U S}) contains a
curvilinear subscheme of X with degree at least v(X). Since dim({{P,Q, } U
S) <#(S) +1=~(X) —2, we get a contradiction. O
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Proposition 4. Let X C P" be an integral and non-degenerate variety.
Set m = dim(X). We have n(X) <2-[(n+2)/(m+1)] — 1.

Proof. For each integer z > 1 let 0,(X) denote the closure in P™ of the
union of all (z — 1)-dimensional linear subspaces spanned by z points of X. Set
z:=[(n+2)/(m+1)]. First assume 0,(X) = P". A dimensional count gives
that for a general P € P there are infinitely many (z — 1)-dimensional linear
subspaces spanned by z points of X. Fix two of them, say (A) and (B) with
AC X,BC X, $A) =4B)==zand (A) # (. For general P we may also
find these linear spaces with A N B = () (again, a dimensional count). Hence
#(A U B) = 2z. Since P € (A) N (B), we have dim((A) N (B)) < 2z — 2. Hence
n(X)<2-[(n+2)/(m+1)] —1. Now assume o0,(X) # P". Hence 0,(X) is an
integral variety, but not with the expected dimension. For a general P € o,(X)
there are infinitely many (z — 1)-dimensional linear subspaces spanned by z
points of X. Any two of them give n(X) <2-[(n+2)/(m+1)] — 1. O

Proof of Theorem 1. Of course, (i) = (ii), but since X is non-degenerate also
the implication (ii) = (i) is obvious. Obviously (i) = (7). Let Sec(X) C P
denote the secant variety of X.

(a) If m = 1, then use Lemma 1. From now on we assume m > 2.

(b) In this step and in step (d) we assume n = 2m+1 and Sec(X) = P?m+1,
Fix a general Q € P?"*1. A dimensional count gives the existence of finitely
many, say k, lines L € P?"*! such that Q € L and #(X N L) > 2; moreover
deg(L N X) = 2 for all such L and L N Sing(X) = 0. First assume k& > 2 and
call L, L' any two such lines and V' the plane spanned by L U L’. Since V is
spanned by 4 points of X, (iii) is not satisfied.

(c) In this step we assume dim(Sec(X)) < 2m (this is always the case if
n < 2m+1). Hence Sec(X) is an irreducible variety of dimension p < 2m. Fix
a general P € Sec(X). Since p > m, then P ¢ X. Fix a hyperplane H C P?"+!
such that P ¢ H. The set of all lines L C P?"*! A dimensional count gives
the existence of an (2m + 1 — p)-dimensional quasi-projective variety T C H
such that each line Ly, t € T\, we have P € L, and §(L; N X) > 2. Fix a general
(t,s) € T xT. Since Ly # Ls and P € LyN L;, Ly U L; spans a plane, V.
By construction V' contains at least 4 non-collinear points. Hence (iii) is not
satisfied.

(d) In this step we assume n = 2m + 1, Sec(X) = P?"*! and that a general
point of P2™*! is contained in a unique secant line of X. Proposition 3 gives
that X is smooth. Fix O € X and assume the existence of Q € X NTpX such
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that @ # O. The line ({0, @}) contains O with multiplicity at least 2. Hence
either L C X or deg(L N X) > 3. Hence (iii) is not satisfied. Fix O € X.
Let ¢ : P21\ To X — P™ denote the linear projection from TpX. Since
ToX N (X \ {0}) = 0, ¢ induces a morphism f : X \ {O} — P™. For any
Q € (X \{0}) set Vg := (ToX U{Q}). Each Vg has dimension m +1. Assume
that Vo N X is a scheme containing a zero-dimensional scheme Z C Vg \ {O}
with deg(Z) > 2. Fix W C Z with deg(W) = 2. Set L := (W). Since L is a
line contained in Vg and Tp X is a hyperplane of Vi, the set LNTpX contains
at least one point, P. First assume P = O. In this case deg(L N X) > 4,
because L N X contains O with multiplicity at least 2 and the degree 2 scheme
W, (iii) is not satisfied. Now assume P # O. Set M := ({P,0}). M is a
line and M N X contains O with multiplicity at least two. Hence the plane
(L U M) contains a degree 4 zero-dimensional subscheme of X. Hence (i) is
not satisfied, a contradiction. We just proved that for each Q € X \ {O}
the scheme Vi N (X \ {O}) is the set {Q} with its reduced structure. Hence
f: X\ {O} — P™ is injective and unramified, i.e. an open embedding. Since
m > 2 and O is a smooth point of X, f extends to a morphism ¢ : X — P".
Both X and P" are smooth. Since ¢[(X \ {O}) has invertible differential,
¢ has invertible differential. Since X \ {O} is injective, ¢ is finite. We get
that ¢ is an isomorphism. Since ¢ is induced by a linear projection, we have
¢*(Opm (1))|X = Ox(1)|(X \ {O}). Since X is smooth and m > 2, we get
Ox (1) = ¢*(Opm(1)). Hence h°(X,Ox (1)) = m + 1. Hence X is degenerate, a
contradiction. O

Example 1. Fix an integer m > 2. Let Y C P™*2 be an integral and
non degenerate curve such that dim((E)) = §(E) — 1 for each finite set £ C Y
with §(£) < 4 and that Y is scheme-theoretically cut-out by quadrics. For
instance, we may take as Y any linearly normal curve of arithmetic genus ¢
and degree g +m +2if g+ m+2—4>2g—1, ie. if ¢ < m — 1. See P+?
as a linear subspace M of P?*™*!, Take an (m — 2)-dimensional linear subspace
W c P2+ such that WNM = (). Let X be the cone with vertex W and Y as a
basis. We will check that & is not satisfied. Since X is scheme-theoretically cut
out by quadrics, every line L C P?™*! containing a degree 3 zero-dimensional
subscheme of X is contained in X. Let E C X be a finite set such that §(E) =4
and assume that (E) is a plane and that (£) N X is zero-dimensional. Hence
(E) N W is either empty or a point. First assume (E) N W = (). The linear
projection from W induces an isomorphism of F onto a set E/ C Y such that
#(E") = 4 and dim((E")) = 2, contradicting our choice of Y. Now assume that
the linear space (E)NW is a point, O. Let R C M be the image of (E)\{O} by
the linear projection from W. R is a line containing the image E” of E'\ {O}.
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Our assumption on Y gives f(E”) < 2. We easily see that (E) contains a line
spanned by O and a point of E”. Hence (E) N X contains a line.
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