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Abstract: It has been conjectured that PSL(2, q), the projective special linear
group of 2 × 2 matrices over a field of order q, is the only non-solvable group
satisfying the property that it has a unique irreducible complex character χ of
degree m > 1 and every other irreducible complex character is such that its
degree is relatively prime to m. (Such a χ is a particular case of the Steinberg
character of finite Chevalley groups.) In this paper, we consider finite solvable
groups satisfying the above property and obtain a complete classification.
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1. Introduction

If G is a finite simple Chevalley group, then G has an irreducible complex
character χ whose degree is the order of a p-Sylow subgroup of G, and all other
irreducible complex characters are in the principal p-block. Such a χ is called
the Steinberg character. See [1] and [3]. For simple groups G, this property
seems to hold only if G is a finite simple Chevalley group. The conjecture,
then, is that the above property about the irreducible complex characters of G
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forces G to be a finite simple Chevalley group. This conjecture seems to be too
difficult at present. However, PSL(2, q) is the only known non-solvable group
which satisfies the following stronger property:

Property 1.1. There is a unique irreducible complex character χ of degree
m > 1 and every other irreducible complex character is such that its degree is
relatively prime to m.

So the problem of classifying all finite groups G satisfying Property 1.1 can
be viewed, at least in the simple case, as a first step towards classifying finite
simple Chevalley groups by their Steinberg character.

A natural and more general question that arises is “What are all the fi-
nite groups that satisfy Property 1.1?” In this paper we obtain a complete
classification of all finite solvable groups satisfying Property 1.1 (see Theorem
3.1).

2. Notations and Preliminary Results

In this section we set the needed notations and state without proof some well
known results in character theory which are needed in the proof of the main
theorem. A reference is given in each case. All groups considered in this paper
are finite. For a group G:

(i) Z(G) is the center of G.

(ii) G′ is the derived group of G.

(iii) [G : H] is the index of a subgroup H in G. |H| and |x| are orders of a
subgroup H and an element x in G, respectively.

(iv) If H ≤ G and x, y ∈ G, then Hx = x−1Hx and yx = x−1yx.

(v) If ψ is a character of a subgroup H, and x ∈ G, then ψx, defined on Hx

by ψx(hx) = ψ(h), h ∈ H, is a character of Hx. If H is normal in G, the
stabilizer of ψ = {x ∈ G | ψx = ψ} is denoted by Tψ,H or simply by Tψ if
the domain of ψ is clear from the context.

(vi) ψG is the character of G induced from the character ψ of the subgroup
H. χ|H is the restriction to H of a character χ of G.

(vii) kerχ is the kernel of a representation corresponding to the character of
G.
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(viii) The inner product of two class functions α and β on G is defined by
(α, β)G = |G|−1

∑
g∈G α(g)β(g). In particular, if α is a character and β

an irreducible character of G, then (α, β)G is the multiplicity of β in α.

We assume all characters to be complex characters. Throughout, Cn denotes
the cyclic group of order n.

We now present the needed results without proofs. A reference is provided
in each case.

Lemma 2.1 (Frobenius reciprocity law, [5] Theorem 9.4). If H is a sub-
group of G and θ and η are complex valued class functions of H and G respec-
tively, then (η, θG)G = (η|H , θ)H .

Lemma 2.2 ([5] Theorem 9.10). Let H be a normal subgroup of G. If η
is an irreducible character of G, then there exists an irreducible character θ of
H and a positive integer a such that η|H = a

∑t
i=1 θ

gi where t = [G : Tθ] and
{gi} is a complete system of coset representatives of Tθ in G.

Lemma 2.3 ([2] Corollary 45.5). Let θ be an irreducible character of a
normal subgroup H of G. Then θG is irreducible if and only if Tθ = H.

Lemma 2.4 ([12] Theorem 1.9). Suppose G is a solvable group, p a prime
such that (p, ψ(1)) = 1 for each irreducible character ψ of G. Then G has a
normal abelian p-Sylow subgroup.

Lemma 2.5 (Thompson [13] Theorem 1). Suppose G is any finite group,
p a prime such that p | ψ(1) for each non-linear irreducible character ψ of G.
Then G has a normal p-complement.

Lemma 2.6 ([5] Theorem 9.13). If N is a normal and abelian subgroup
of G and ψ is any irreducible character of G, then ψ(1) | [G : N ].

Lemma 2.7 ([5] Theorem 12.1). Let A = (aij) be a nonsingular complex
matrix of degree k. If σ is a permutation of the k2 ordered pairs (i, j) with
i, j = 1, 2, . . . , k, define Aσ = (aσ(i,j)). Suppose G is a group of permutations
on the k2 ordered pairs (i, j), such that for each σ in G, Aσ can be obtained
from A by permuting the rows of A and Aσ can also be obtained from A by
permuting the columns of A. Let C be the columns of A and R the rows of A.
Then G acts on C and R as a permutation group, and the number of orbits is
the same in both representations. Moreover, if G is cyclic, then the number of
rows fixed by G equals the number of columns fixed by G.

In all applications of the above lemma in this paper, A will be the character
table of a normal subgroup.
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Lemma 2.8 ([12] Proposition 1.5). Let G be a group and N ⊳G. Then G
is Frobenius with kernel N if and only if each non-principle irreducible character
of N induces an irreducible character of G.

Lemma 2.9 (Gallagher [6] Theorem 2). Let N ⊳ G, τ be an irreducible
character of N . Suppose τ has an extension τ̂ to Tτ . Then τ

G =
∑

ω ω(1)(ωτ̂ )
G

where the sum runs over the irreducible characters ω of Tτ/N . Each (ωτ̂)G is
irreducible and (ω1τ̂)

G = (ω2τ̂)
G implies ω1 = ω2.

Lemma 2.10 (Gallagher [6] Theorem 1). LetN⊳G and τ be an irreducible
character of N . Then for each irreducible constituent χ of τG, there is a unique
irreducible character ζ of Tτ such that (τTτ , ζ)Tτ ≥ 1 and (ζG, χ)G ≥ 1. For
this ζ, ζ|N = aτ for some positive integer a and ζG = χ.

Lemma 2.11 (Gallagher [6] Theorem 3). Let N be a normal subgroup of
prime index p in G. Then each invariant irreducible character of N extends to
an irreducible character of G.

Lemma 2.12 (Gallagher [6] Lemma 1 and Theorem 6). Suppose N EG.
If N is a Hall subgroup of G, then each irreducible character of N extends to
its stabilizer. If N is abelian and complemented in G, then each irreducible
character of N extends to its stabilizer.

Lemma 2.13 (Isaacs [10] Proposition 3). Let K⊳H be such that H/K is
an elementary abelian p-group and let A act on H and normalize K, with the
induced action on H/K being non-trivial and irreducible. Then the following
hold.

(i) If χ 6= 1H is an irreducible character of H which is stabilized by A, we
have that either:

(a) χ|K is irreducible and 6= 1K , or

(b) χ|K = aθ, θ irreducible, 6= 1K and a2 = [H : K], or

(c) χ|K =
∑t

i=1 θi where t = [H : K] and the θi are distinct irreducible
characters of K, transitively permuted by H.

(ii) If θ 6= 1K is an irreducible character of K which is stabilized by A and θH

is the induced character, we have that either:

(a) θH is irreducible, or

(b) θH = aχ, χ irreducible and a2 = [H : K], or

(c) θH =
∑t

i=1 χi where t = [H : K] and the χi are distinct irreducible
characters of H which are transitively permuted by multiplication by
the linear characters of H/K.
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In all applications of the above lemma in this paper, we let H/K be a chief
factor of a solvable group G and let A = G. We also note from the proof that
the assumption that the action of A is non-trivial on H/K is used only to show
θ 6= 1 in (b) of (i).

Lemma 2.14 (Seitz [11]). A group G has exactly one non-linear, irre-
ducible character if and only if (i) G is an extra-special 2-group or (ii) G is
isomorphic to the group of all transformations x 7→ αx+ β, α 6= 0 on a field of
order pn 6= 2.

The following lemma is needed in the proof of the next lemma, which will
play an important role in the proof of the main theorem in the next chapter.

Lemma 2.15. Let G = HA be a Frobenius group with kernel H and
complement A. Suppose A is cyclic. Let V be a faithful, irreducible module of
CG, the group algebra over complex numbers. Then V |A = t · ρA where ρA is
the regular representation of A and t is some positive integer.

Proof. By Lemma 2.2, V |Z(H) = V1 + V2 + · · ·+ Vℓ where the Vi are homo-
geneous and transitively permuted by A.

Claim. No non-identity element of A stabilizes Vi for any i.

Suppose that the subgroup A1, the stabilizer of V1 in A, is non-trivial. Then
G1 = Z(H)A1 is a Frobenius group. Let N1 be the kernel of the representa-
tion of G1 on V1. Since G1 is Frobenius, either N1 < Z(H) or N1 ≥ Z(H).
If N1 ≥ Z(H), then, sine the Vi’s are transitively permuted by A, Z(H) is
contained in the kernel of the representation of Z(H) on every Vi, contradict-
ing the hypothesis that V is a faithful module for G. So N1 < Z(H) and
G1/N1 = Z(H)/N1 · A1N1/N1 is a Frobenius group. Since G1/N1 acts faith-
fully on V1, Z(H)/N1 is cyclic and each element of Z(H)/N1 acts as a scalar
transformation on V1. Therefore [Z(H)/N1, A1N1/N1] is in the kernel of the
representation of G1/N1 on V1, and hence, [Z(H)/N1, A1N1/N1] = 1. This is a
contradiction since G1 is Frobenius. This proves the claim.

If v 6= 0 ∈ V1, the elements in the set {va | a ∈ A} lie in distinct direct sum-
mands Vi by our claim and, hence, are linearly independent. Since (va)a

′

= vaa
′

,
the space spanned by {va | a ∈ A} gives a regular representation of A. Now let
{v1, v2, . . . , vt} be a basis of V1. Then {vai | 1 ≤ i ≤ t, a ∈ A} is a basis of V
and

V |A = 〈{va1 | a ∈ A}〉 ⊕ 〈{va2 | a ∈ A}〉 ⊕ · · · ⊕ 〈{vat | a ∈ A}〉

is a direct sum of t submodules, each giving a regular representation of A. Thus,
θ|A = t · ρA.
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Lemma 2.16. Let K be minimal normal in a solvable group G and let
G/K be Frobenius with kernelM/K. Suppose that G/M is cyclic of order q−1
where q = pn for some prime p and M/K is elementary abelian of order q but
M is not abelian. Then one of the following assertions holds:

(a) q = 3

(b) K is a p-group (so that M is a p-group)

(c) There exists an irreducible character ϕ 6= 1K of K and an irreducible
character θ of G such that (ϕG, θ)G ≥ 1 and (θ(1), q − 1) 6= 1.

Proof. Suppose that neither (b) nor (c) holds. We shall prove that q = 3.
Let |K| = rm, r a prime 6= p, and let Q be a p-Sylow subgroup of G. Then
Q ≤ M and M = Q · K. By the Frattini argument, G = NG(Q) · M =
NG(Q) ·Q ·K = NG(Q) ·K. Noting that NG(Q)∩K⊳G, K is minimal normal
in G and that M is non-abelian, we get NG(Q) ∩K = 1. So G is a semidirect
product of NG(Q) and K and NG(Q) can be written as Q · T where T is a
subgroup of order q − 1 and is cyclic.

Let ϕ = 6= 1K be a linear character of K. By Lemma 2.12 ϕ extends
to a linear character of ϕ̂ of the stabilizer Tϕ of ϕ. Then ϕ̂G is irreducible
([2] Corollary 45.4) of degree ϕ̂G(1) = ϕ̂(1)[G : Tϕ] = [G : Tϕ]. Then 1 =
(ϕ̂G, ϕ̂G)G = (ϕ̂G, ϕ̂)Tϕ by Lemma 2.1 and this implies (ϕ̂G|K , ϕ̂|K)K ≥ 1.
Since ϕ̂|K = ϕ, we get (ϕ̂G|K , ϕ)K ≥ 1, and using Lemma 2.1 again, we get
(ϕ̂G, ϕG)G ≥ 1. Since we are assuming that the possibility (c) of the conclusion
does not occur, we conclude that ϕ̂G(1) = [G : Tϕ] and q−1 are relatively prime.
Hence q− 1 | |Tϕ| and so by a theorem of Philip Hall ([8] Theorem 9.3.1), some
conjugate of TK ≤ Tϕ. Let R denote the representation of G/K acting by
conjugation on the irreducible module K. If the representation is not faithful,
then the kernel, say N/K is either contained in M/K or contains M/K. Since
M is not abelian, N/K < M/K. Therefore the character θ remains the same
on TK/K whether K is considered as a G/K-module or as a G/N module.

Hence, by Lemma 2.15, R|TK/K = t · ρTK/K , where ρTK/K is the reg-
ular representation of TK/K and t is some positive integer. In every reg-
ular representation module, the dimension of the subspace of fixed points is
1 and so TK/K fixes rt − 1 non-trivial elements of K. Since the size of
ρTK/K(1) = |TK/K| = |T | = q − 1, we get |K| = rt(q−1) and so there

are rt(q−1) − 1 non-trivial elements in K. Since G/K is Frobenius and since
|TK/K| = |M/K| − 1, TK/K acts transitively on the non-trivial elements of
M/K. Therefore, two different TK/K’s generate all of G/K, and this implies
two different TK/K’s cannot fix the same non-trivial element in K, since K
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is minimal normal and M is non-abelian. There are q conjugates of TK/K,
each fixing rt − 1 non-trivial elements in K. Thus, equating the total number
of fixed elements in K, we get

q(rt − 1) = rt(q−1) − 1

i.e.,

q =
rt(q−1) − 1

rt − 1
= rt(q−2) + rt(q−3) + · · · + 1 > 2q−2.

This clearly implies that q = 3. The proof is complete.

3. Results

The main theorem of this paper is the following:

Theorem 3.1. Suppose G is a finite solvable group having exactly one
irreducible character χ of degree χ(1) = m > 1 and every irreducible character
η of G is such that (η(1),m) = 1. Then G is isomorphic to one of the following:

(a) An extra-special 2-group

(b) The group of all transformations x 7→ αx+ β (α 6= 0) on a field of order
pn 6= 2

(c) S4, the symmetric group on 4 letters

(d) SL(2, 3), the special linear group of 2× 2 matrices over field of order 3

(e) A semidirect product of SL(2, 3) with C3 × C3.

The character χ is faithful in cases (a) and (b) and non-faithful in cases (c),
(d), and (e).

The proof is carried out in a sequence of lemmas.

Lemma 3.2. Suppose the hypotheses of the theorem hold and that χ is
faithful. Then G is isomorphic to one of the groups listed in (a) and (b).

Proof. Let χ(1) = m = pm1

1 · pm2

2 · · · · · pmk

k , where each pi is prime and
let N be a minimal normal subgroup of G. Then, by hypothesis, B/N has no
irreducible character ζ such that pi | ζ(1) for any i = 1, 2, . . . , k. By Lemma 2.4,
G/N has normal abelian pi-Sylow subgroup for every i. Let Pi be a pi-Sylow
subgroup of G and H be the group P1 · P2 · · · · · Pk ·N so that H is normal in
G.
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Claim. H = G

Suppose H 6= G and that M is a maximal normal subgroup of G containing
H. Then G/M is cyclic of order p for some prime p 6= pi for any i. By Lemma
2.2,

χ|M = a

t∑

i=1

θgi

where θgi are irreducible characters of M , a and t are positive integers and
t = [G : Tθ]. Equating the degrees, we get

χ(1) = a · t · θ(1).

If θ(1) = 1, then M ′ ⊆
⋂t
i=1 ker θ

gi ⊆ kerχ = 1, and so M is abelian. But then
Lemma 2.6 implies χ(1) | [G :M ], which is a contradiction. Therefore θ(1) > 1.
Also, since [G :M ] is a prime number, t = 1 or [G :M ]. If t = [G :M ], then θG

is irreducible (Lemma 2.3) of degree θ(1)[G : M ], and since θ(1) | χ(1), this is
a contradiction to our hypothesis. Therefore t = 1. By Lemma 2.11, θ extends
to an irreducible character θ̂ of G. By hypothesis, θ̂ = χ and so χ|M = θ. But
then θ = χ|M has [G : M ] distinct extensions, once again contradicting our
hypothesis. This proves our claim that H = G.

Since N is normal and abelian, Lemma 2.6 and our hypotheses imply that
χ is the only non-linear irreducible character of G. Lemma 2.14 yields the
required result.

Remark 3.3.

(i) As seen in the above proof, the hypothesis of Lemma 3.2 implies that χ
is the only non-linear irreducible character of G.

(ii) If G is an extra-special 2-group of order 2k, then χ(1) = 2(k−1)/2, so that
the degree of χ determines the order of the group and conversely.

(iii) If G is a group of all transformations x 7→ αx + β (α 6= 0) on a field of
order pn 6= 2, then G is a Frobenius group of order pn(pn − 1). If M is
the Frobenius kernel of G, then |M | = pn, M is elementary abelian and
G/M is cyclic. The degree of χ is pn − 1 and so once again the order of
G is determined by the degree of χ, and conversely.

We now set out to investigate kerχ.

Lemma 3.4. Suppose that the hypothesis of Theorem 3.1 holds and that
kerχ = K > 1. Then G/K is a Frobenius group of the type listed in (b) of
Theorem 3.1. If M/K denotes the Frobenius kernel, then M ′ = K.
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Proof. By Lemma 3.2, G/K is either an extra special 2-group or a Frobe-
nius group. We shall prove G/K cannot be a 2-group. To this end, assume G
is a minimal counter-example so that G/K is a 2-group. By minimality of |G|,
K is a minimal normal subgroup of G. Then Lemma 2.6 and the hypothesis
of Theorem 3.1 together imply that χ is the only non-linear irreducible char-
acter of G. Therefore, by Lemma 2.14, G is either an extra-special 2-group
or a Frobenius group, and in either case χ is faithful. This contradicts our
assumption that kerχ = K > 1. Hence, G/K is a Frobenius group.

It remains to prove M ′ = K, where M/K is the Frobenius kernel of G/K.
Clearly M ′ ≤ K, since M/K is abelian (see Remark 3.3 (iii)). If M ′ < K, then
M/M ′ is a normal, abelian subgroup of G/M ′. Hence it follows once again
by Lemma 2.6 and the hypotheses (note χ(1) = [G : M ]) that χ is the only
non-linear character of G. In such a case χ is always faithful and again we have
a contradiction. This proves Lemma 3.4.

As we will see later, the following lemma and Lemma 2.6 together reduce
the proof to the case χ(1) = 2 or 3.

Lemma 3.5. Suppose the hypotheses of Theorem 3.1 hold and that
kerχ = K > 1. Further, suppose that K is minimal normal and that M
(same as in Lemma 3.4) is a p-group for some prime p. Then G ∼= SL(2, 3).

Proof. The proof is carried out in 3 steps.

Step 1. K ≤ Z(G).

Suppose K 6≤ Z(G). Let |M/K| = pn so that [G : M ] = χ(1) = pn − 1.
Since G is solvable, we can write G = MT where T ∼= G/M is a cyclic group
of order pn − 1. Since K is minimal normal and M is a p-group, we have
K ≤ Z(M). Then G/CG(K) is cyclic; say G/CG(K) = 〈ḡ〉, where ḡ = gCG(K),
g ∈ T . The group 〈g〉 acts on the irreducible characters of K and if g fixes every
irreducible character of K, then by Lemma 2.7 (applied to the character table
of K) g ∈ CG(K), contrary to our assumption that G 6= CG(K). So there exists
ϕ 6= 1, an irreducible character of K, such that φ 6= φg. Let η be an irreducible
character of M such that (φM , η)M ≥ 1. If η(1) = 1, then η = 1 on M ′ = K
and by Lemma 2.1, we get (φM , η)M = (φ, 1)K ≥ 1. This is impossible since
φ 6= 1. Therefore η(1) > 1. Since K ≤ Z(M), η|K = a · φ for some positive
integer a and so ηg|K = a · φg. Hence, η 6= ηg and so Tη, the stabilizer of η, is
a proper subgroup of G. If Tη =M , then ηG would be an irreducible character
(Lemma 2.3) of degree χ(1)η(1) > χ(1) (since η(1) > 1). This is impossible by
our hypotheses. Thus G > Tη > M . Let θ be an irreducible character of G
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such that (ηG, θ)G ≥ 1. By Lemma 2.10, there exists an irreducible character
ζ of Tη such that

(i) ζG = θ and

(ii) ζ|M = r · η for some positive integer r.

Then the equation (i) implies (θ(1), χ(1)) 6= 1. Therefore θ = χ, by hypoth-
esis, and so χ(1) = pn − 1 = ζG(1) = ζ(1)[G : Tη]. Hence

ζ(1) =
pn − 1

[G : Tη ]
. (1)

On the other hand the equation (ii) implies ζ(1) = r ·η(1). Since p|η(1) (η is an
irreducible character ofM , a p−group), we get p|ζ(1) and this is a contradiction
to (1). Hence K ≤ Z(G).

Step 2. Z(M) = K.

If Z(M) > K, then G/Z(M) is a Frobenius group with kernel M/Z(M)
and complement a cyclic group of order pn− 1. But an element of order pn− 1
cannot act fixed-point free on a group of order < pn and |M/Z(M)| < pn.
Therefore Z(M) = K.

Step 3. We now prove Lemma 3.5.

Since K is minimal normal and contained in Z(G), |K| = p for some prime
p. Also M is a class 2, p-group with Z(M) = K =M ′ (Lemma 3.4) and M/K
is elementary abelian. Thus M/K is a vector space over K, considered as a
field of order p. Then the map from M/K×M/K → K defined by [aK, bK] 7→
a−1b−1ab is easily checked to be a well-defied alterating non-degenerate linear
form on M/K ×M/K. Thus M/K is a symplectic space. The cyclic group
T of order pn − 1 can be considered a subgroup of Sp(2 · n/2, p) (the group of
symmetries of the spaceM/K). Since T acts irreducibly onM/K, by a theorem
on symplectic groups ([9] Satz 9.23, p.228) we get |T | = pn − 1 | pn/2 + 1. This
implies p = n = 2. Hence, |K| = 2, |M/K| = 4 and |G/M | = 3, i.e., G is a
group of order 24 and χ(1) = 3. It is now easy to check that G ∼= SL(2, 3).

The next two lemmas are particular cases of Theorem 3.1 and settle cases
when χ(1) = 2 or 3.

Lemma 3.6. Suppose the hypotheses of Theorem 3.1 hold with χ(1) = 2.
If kerχ = K > 1, then G ∼= S4.
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Proof. From Lemma 3.4, we have the following picture:

G
| 2
M
| 3
K
|
1

where M ′ = K and G/K ∼= S3.
The proof is carried out in a sequence of steps.

Step 1. M is a Frobenius group with kernel K.

By Lemma 2.8, it is enough to show that every non-trivial irreducible char-
acter ϕ of K is such that ϕM is an irreducible character of M . Let η be an
irreducible character of M such that (η, ϕM )M ≥ 1. Lemma 2.1 and the fact
that M ′ = K imply that η(1) > 1. Then Tη = G, for if Tη =M , then ηG would
be an irreducible character of G with 2 | ηG(1) and 2 < ηG(1), contrary to the
hypothesis. Thus, Lemma 2.13 applies and we have the following possibilities.

(i) η|K is irreducible,

(ii) η|K = aϕ, a2 = [M : K],

(iii) η|K =
∑3

i=1 ϕi, ϕi distinct irreducible characters of K transitively per-
muted by M (ϕ1 = ϕ, say).

Possibility (ii) is ruled out since a2 cannot be 3. Suppose possibility (i) occurs.
Since Tη = G, by Lemma 2.12, η extends to an irreducible character η̂ of
G. Then the characters {ω · η̂ | ω irreducible character of G/K ∼= S3} are all
irreducible by Lemma 2.9. But one of the ω’s is χ and η̂(1) > 1, and this is a
contradiction to our hypothesis. Therefore, only the possibility (iii) can occur
and this is equivalent to saying ϕM = η (Lemma 2.3). The proof of Step 1 is
complete.

Step 2. K is an abelian 2-group.

We first note that K is nilpotent since it is the kernel of a Frobenius group
([7] Theorem 10.3.1 (iii), p.339). Next we prove the following.

Claim. |K| is even.
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Proof. Suppose |K| is odd and G is a minimal counterexample. If there
is a normal subgroup L of G such that 1 < L < K, then by minimality of
G, 2 | [K : L], contrary to our supposition that |K| is odd. Therefore we can
assume K is minimal normal in G and K ∼= CP × Cp × · · · × Cp, with p > 3
(p 6= 3 since M is Frobenius with kernel K). Thus, we can regard K as an
irreducible module for G/K ∼= S3. Since p > 3, the degree of an irreducible
representation of S3 over Cp is either 1 or 2. Also, K 6= Cp, since Aut(Cp)
is cyclic and G/K is a non-cyclic group acting faithfully on K. Therefore,
we can assume K ∼= K1 × K2 with K1

∼= K2
∼= Cp. Let tK and xK be

elements of order 2 and 3 respectively in G/K. The minimal polynomial of
tK on K is Y 2 − 1 = (Y + 1)(Y − 1), for if tK acts as either 1 or −1 on
K, then tK and xK commute on K, so that 〈[tK, xK]〉 = 〈xK〉 acts trivially
on K and this is not the case. Therefore, we may suppose tK|K1

= −1 and
tK|K2

= 1. Let ζ 6= 1K be an irreducible character of K/K2. Then ζ 6= ζt and
we know ζ, ζx, ζx

2

are distinct since M is Frobenius. Let g 6= 1 ∈ K2 and let
gx

−1

= g1 · g2 for some g1 6= 1 ∈ K1 and g2 ∈ K2. (If g1 = 1, then K2 would
be normal in G whereas K is minimal normal in G). Then ζt(g) = ζ(gt) = 1
whereas ζx(g) = ζ(gx

−1

) = ζ(g1)ζ(g2) = ζ(g1) 6= 1. Thus ζx 6= ζt. Similarly,
ζx

2

6= ζt and hence, there are more than 3 conjugates of ζ. It now follows from
Lemma 2.3 that ζG is irreducible. This is a contradiction to our hypothesis
on the degrees of the irreducible characters of G and the proof of the claim is
complete.

Since K is nilpotent, we can write K = P1×P2×· · ·×Pr with P1 a 2-Sylow
subgroup of K. Considering the quotient group G/P1 and using induction on
|G|, we obtain Pi = 1 for i > 1. Thus, K = P1, a 2-group. If K is not abelian,
then there exists an irreducible character θ of K such that θ(1) = 2ℓ, ℓ ≥ 1.
Then θM is irreducible since M is Frobenius. If TθM =M , then (θM )G = θG is
irreducible by Lemma 2.3, and if TθM = G, then θM extends to an irreducible
character of G by Lemma 2.11. In either case, we have a contradiction to our
hypothesis. Therefore K is an abelian 2-group. The proof of Step 2 is complete.

Step 3. K ∼= C2 × C2.

Let Ω1(K) = {g ∈ K | g2 = 1}. Then, 1 < Ω1(K) is a characteristic
subgroup of K, and so Ω1(K)⊳G. Using induction on |G|, we conclude that

either K/Ω1(K) ∼= C2 × C2, or K = Ω1(K) (2)

Since x (same as in Step 2) does not fix anything in Ω1(K), Ω1(K) decomposes
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into Ω1(K) = L1×L2× · · · ×Lr with each Li ∼= C2×C2 and is 〈x〉-irreducible.

Claim. Li is 〈t〉-invariant for every i.

Proof. Fix i and suppose Li 6= Lti. By the Frattini argument, NG(〈x〉)·M =
G. SinceM = 〈x〉K, we obtain NG(〈x〉)·K = G. Also, since 〈x〉·K is Frobenius,
NG(〈x〉) ∩K = 1. Thus, we may suppose that t ∈ NG(〈x〉), and so x leaves Lti
invariant. Therefore, Li∩L

t
i = 1, for otherwise Li∩L

t
i would be an 〈x〉-invariant

subgroup of order 2. But then, x fixes some non-trivial element of K. Hence we
may suppose that Lti = Lj for some j, i.e., Ω1(K) = Li × Lj ×

∏
s 6=i,j Ls with

Lti = Lj. Let Li = 〈a〉× 〈b〉, a2 = b2 = 1. Let ϕ 6= 1 be an irreducible character

of Ω1(K) having 〈b〉×Lj ×
∏
s 6=i,j Ls as its kernel. Then ϕ,ϕ

x, ϕx
2

are distinct
since 〈x〉 · Ω1(K) is Frobenius. Also, since Lj is 〈x〉-invariant, Lj is contained

in the kernel of each ϕ,ϕx and ϕx
2

, whereas ϕt(at) = ϕ(a) 6= 1. Therefore
ϕt 6= ϕ,ϕx, ϕx

2

. Since K is abelian, ϕ extends to an irreducible character ϕ̂
of K (Lemma 2.12) and the above argument implies Tϕ̂ = K. Hence ϕ̂G. is
irreducible (Lemma 2.3) of degree 6. This contradiction proves the claim.

Thus Li⊳G for every i. Then, by induction on |G|, G/L1
∼= S4 or S3. This,

together with (2), implies either (i) K/Ω1(K) ∼= C2×C2 with Ω1(K) ∼= C2×C2,
or (ii) K = Ω1(K) ∼= C2 × C2, or (iii) K = Ω1(K) ∼= (C2 × C2) × (C2 × C2)
with each (C2 ×C2)⊳G. Thus, we conclude that one of the following holds.

(i) K ∼= C2 × C2

(ii) K ∼= (C2 ×C2)× (C2 × C2) with each (C2 × C2)⊳G

(iii) K ∼= C4 × C4

If (i) holds, we are done. We shall prove that neither (ii) nor (iii) can hold.
To this end, first suppose (ii) holds and let K = L1 × L2 where Li ∼= C2 × C2

and Li⊳G for i = 1, 2. As before, if t is an element of order 2 in NG(〈x〉), then
t cannot centralize either L1 or L2; for if it does, say L1, then CG(L1) would
be a normal subgroup of G contaiing K and 3 | [G : CG(L1)]. Since G/K ∼= S3,
CG(L1) = G, contradicting the fact that M is Frobenius. Therefore, there
exists an irreducible character say ζ 6= 1 of L1 such that ζt 6= ζ (Lemma 2.7).
Actually we can produce an irreducible character θ of L1 such that θt 6= θ and
also θt 6= θx. to get such a θ, first we get a ζ, as above. If ζt 6= ζx, then we
set θ = ζ. If ζt = ζx, then we let θ = ζt. Then θt = (ζt)t) = ζ 6= θ and
θx = (ζt)x = (ζx)x = ζx

2

6= ζ = θt. Similarly, we can obtain an irreducible
character ϕ of L2 such that ϕt 6= ϕ and also ϕt 6= ϕx

2

. Then θ · ϕ is an
irreducible character of K ∼= L1×L2 ([7] Theorem 3.7.1, p.100). We now check
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that θ ·ϕ has 6 conjugates. Clearly, θ ·ϕ, (θ ·ϕ)x and (θ ·ϕ)x
2

are distinct since
M is Frobenius. (θ · ϕ)t = θ · ϕ implies θt = θ and ϕt = ϕ, a contradiction.
(θ · ϕ)t = (θ · ϕ)x implies θt = θx, a contradiction. (θ · ϕ)t = (θ · ϕ)x

2

implies
ϕt = ϕx

2

, a contradiction. Hence (θ · ϕ)G is an irreducible character of G
(Lemma 2.3) of degre 6. This is a contradiction to our hypothesis. Therefore
(ii) cannot hold.

Now suppose (iii) holds, i.e. K ∼= C4 × C4, and Ω1(K) = C2 × C2 ⊳ G.
Then t does not centralize Ω1(K) since G/K has no normal subgroup of index
3. Therefore, we may suppose Ω1(K) = 〈a〉 × 〈b〉, a2 = b2 = 1 and at = b,
bt = a. Let h ∈ K be such that h2 = a, |h| = 4. Then, 〈h〉 ∩ 〈ht〉 = 1, since
h2 = a is not fixed by t. Let K◦ = 〈hht〉. Then |K◦| = 4 and t centralizes K◦.
Also (hK◦)

t = htK◦ = h−1K◦. If ϕ 6= 1 is a faithful irreducible character of
K/K◦ then ϕt 6= ϕ and kerϕt = kerϕ. Moreover |K◦ · Ω1(K)/Ω(K)| = 2 and
so x cannot normalize K◦Ω1(K)/Ω1(K), since G/Ω1(K) ∼= S4, and M/Ω1(K)
is Frobenius. Therefore, K◦ is not normalized by x, and so K◦,K

x
◦ ,K

x2
◦ are

distinct. Hence, ϕ,ϕx, ϕx
2

are distinct and none of them equals ϕt since the
kernels are different. This implies, again, that ϕ has 6 conjugates and so ϕG is
an irreducible character of G of degree 6. This contradiction proves Step 3 and
hence the lemma.

Lemma 3.7. Suppose the hypothesis of Theorem 3.1 holds with χ(1) = 3.
If kerχ = K > 1 then G is isomorphic to either SL(2, 3) or to a semidirect
product of SL(2, 3) with C3 × C3.

Proof. From Lemma 3.4, we have the following picture:

G
| 3
M
| 4
K
|
1

with M ′ = K and G/K ∼= A4.
Once again the proof is carried out in a sequence of steps.

Step 1. M has a normal 2-complement, say H.

By Lemma 2.5, it is enough to show that 2 | θ(1) for every non-linear
irreducible character θ of M . To see this, we first observe that Tθ = G, for
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if Tθ = M , then by Lemma 2.3, θG would be an irreducible character of G
of degree divisible by 3 and > 3. This is a contradiction to the hypotheses.
Lemma 2.13 now yields the following three possibilities:

(i) θ|K is irreducible

(ii) θ|K = aϕ for some irreducible character ϕ of K and a2 = [M : K] = 4

(iii) θ|K =
∑4

i=1 ϕi, ϕi distinct irreducible characters of K

If (i) occurs, then since [G : M ] is prime and θ is stabilizied by G, θ
extends to an irreducible character say θ̂ of G by Lemma 2.11. Thus θ|K as
an irreducible character of K extends to an irreducible character θ̂ of G and is
stabilized by G. We can now apply Lemma 2.9 and get (θ|K)

G =
∑

ω ω(1)ωθ̂

where ω ranges over all irreducible characters of G/K and the characters {ωθ̂}
are distinct and irreducible. Since G/K is A4, and θ̂ is non-linear, one of ωθ̂ is
an irreducible character of degree > 3 and divisible by 3. This is a contradiction
to the hypothesis. Thus, only either (ii) or (iii) can occur and in either case,
clearly, 2 | θ(1). This proves Step 1.

Step 2. If the normal 2-complement H = 1, so that M is a 2-group, then G is
isomorphic to SL(2, 3).

Let K = K0 ⊲ K1 ⊲ K2 ⊲ K3 · · · ⊲ Kn ⊲ 1 be a part of a chief series for
G. Then Kn ∩ Z(M) 6= 1, since M is a 2-group, and so the minimality of Kn

implies Kn ≤ Z(M). Therefore every subgroup of Kn is normal in M . Let g
be an element of order 3 in G so that G = 〈g〉 ·M . Since |g| = 3, under the
action of g each irreducible consituent of Kn has order equal to either 2 or 4.
But then, every such constituent of Kn is normal in G. Therefore |Kn| = 2 or
4. The same argument applied to th group G/Kn shows that |Kn−1/Kn| = 2 or
4, etc. Thus, |Ki/Ki+1| = 2 or 4 ∀i. Suppose |Kn| = 4, so that Kn

∼= C2 ×C2.
Then g does not centralize any non-trivial element of Kn and so there exists
a linear character ζ 6= 1 of Kn such that ζ 6= ζg (Lemma 2.7). Let ϕ be an
irreducible character ofM such that (ζM , ϕ)M ≥ 1. Then Frobenius reciprocity
(Lemma 2.1) and the fact that Kn ≤ K = M ′ imply that ϕ(1) > 1. Since
Kn ≤ Z(M), we conclude that ϕ|Kn = a · ζ for some positive integer a, and so
ϕg|Kn = a · ζg 6= ϕ|Kn . Thus, ϕg 6= ϕ, and so Tϕ < G. Therefore Tϕ = M ,
since [G : M ] is prime. But then, Lemma 2.3 implies ϕG is irreducible. This
is a contradiction since ϕG(1) = 3 · ϕ(1) > 3. Hence |Kn| = 2. Applying the
same argument to G/Kn, we obtain |Kn−1/Kn| = 2, etc. Thus |Ki/Ki+1| = 2
∀i, and g centralizes Ki/Ki+1 for every i. This implies that g centralizes K
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since (|g|, |K|) = 1. Also, G′ = M , for clearly, G′ ⊆ M and G′ ⊇ M ′ = K
and G/K, being isomorphic to A4, does not have any proper normal subgroups
between M and K. Since g ∈ CG(K), G/CG(K) is a 2-group. This implies
that G = CG(K), as M is 2-Sylow and contained in G′. It now follows that
Z(M) = K, since G/K is isomorphic to A4. Thus M is a class 2, 2-group.
Also, M ′ is generated by commutators [x, y], where x and y range over the
coset representatives of Z(M) in M . Let M = K ∪ Kx ∪ Ky ∪ Kxy. Then,
M ′ = 〈[x, y], [x, xy], [y, xy]〉. But, [x, xy] = [x, x][x, y] and [y, xy] = [y, x][y, y],
since M is a class 2-group. Therefore M ′ = 〈[x, y]〉 is a cyclic 2-group. Also,
[x, y][x, y] = [x, y2] = 1, since y2 ∈ K = Z(M). Hence, |K| = 2 and so |G| = 24.
This clearly implies that G is isomorphic to SL(2, 3).

From now on, we suppose H > 1.

Step 3. We may asume [K : H] = 2.

SinceH is the normal 2-complement inM and sinceK is a normal subgroup
of M of index 4 in M , we get H ⊂ K. By using induction on |G|, we obtain
either G/H is isomorphic to A4, so that K = H, or G/H is isomorphic to
SL(2, 3), so that [K : H] = 2, or G/H is isomorphic to SL(2, 3) · (C3 × C3).
The last possibility cannot occur since M/H is a 2-group. Thus it is enough
to show that K 6= H. Suppose K = H. Then, H is minimal normal in G, for
if L < H and L ⊳ G, then by induction G/L is isomorphic to either SL(2, 3)
or SL(2, 3) · (C3 × C3) and so in either case 2 | |H|, contrary to the fact that
H is a 2′-group. Therefore, H = Cp × Cp × · · ·Cp for some odd prime p. We
now claim M is a Frobenius group with kernel H. Let ϕ 6= 1 be a linear
character of H. By Lemma 2.8, it is enough to show ϕM is irreducible. To this
end, first consider the case Tϕ = G. In particular, M stabilizes ϕ and so by
Lemma 2.12, ϕ extends to a linear character ϕ̂ of M . But then, since M ′ = K
(Lemma 3.4) and K = H, we get ϕ̂|H = 1H whereas ϕ̂|H = ϕ 6= 1H . Therefore
Tϕ < G. Suppose 3 | [G : Tϕ] and let η be an irreducible character of G such
that (ϕG, η)G ≥ 1. By Lemma 2.10, there exists an irreducible character ζ
of Tϕ such that ζG = η. Since 3 | ζG(1), we get η = χ. So by Lemma 2.1,
(ϕG, χ)G = (ϕ,χ|H)H ≥ 1. This is impossible since χ|H = 3 · 1H . Thus, we
have Tϕ < G and 3 ∤ [G : Tϕ]. We can write M = R · H, R ∩ H = 1, where
R is a 2-Sylow subgroup of M and R is isomorphic to C2 × C2. Let gH be an
element of order 3 in G/H. Then since G/H has no subgroup of index 2, and
since 3 ∤ [G : Tϕ], we conclude that Tϕ is a conjugate of 〈g〉H. Thus Tϕ∩R = 1,
and so by Lemma 2.3, ϕM is irreducible, proving our claim thatM is Frobenius
with kernel H. But then, since a 2-Sylow subgroup of a Frobenius complement



FINITE SOLVABLE GROUPS HAVING A UNIQUE... 513

is either cyclic or generalized quaternion, we cannot have R being isomorphic
to C2 × C2. This contradiction proves that K 6= H and Step 3 is complete.

Step 4. We can now assume 1 < H < K and [K : H] = 2, because of Step 2
and Step 3. Then G is isomorphic to SL(2, 3) · (C3 × C3).

First we claim that H is an abelian p-group for some prime p. If H is
minimal normal in G this is certainly true. So, suppose H is not minimal
normal in G and let L < H with L⊳G. By induction on |G|, we may assume
G/L is isomorphic to SL(2, 3) · (C3 × C3) and that L is minimal normal. We
have the following picture:

G
| C3

M
| C2 ×C2

K
| C2

H
| C3 ×C3

L
| Cp × Cp × · · · × Cp
1

with G′ =M and G/H ∼= SL(2, 3).
Suppose that H is not abelian and let θ be a non-linear irreducible character

of H. By Ito’s Theorem (Lemma 2.6) 3 | θ(1). Let ϕ be an irreducible character
of G such that (θG, ϕ)G ≥ 1. This implies by Lemma 2.1, (θ, ϕ|H)H ≥ 1.
Hence by Lemma 2.2, ϕ(1) = r · θ(1) for some positive integer r. Therefore
by hypothesis, ϕ = χ, r = 1 and χ|H = θ. This is impossible since χ|H =
3 · 1H , whereas θ 6= 3 · 1H by our choice of θ. Therefore H is abelian. Let
L = Cp × Cp × · · · × Cp. If p 6= 3, then H = C3 × C3 × Cp × Cp × · · · × Cp.
By considering the smaller group G/(C3 ×C3) and using induction hypothesis,
we get H/(C3 × C3) is isomorphic to C3 × C3. So we may assume p = 3 and
that H is an abelian 3-group. This proves the claim that H is an abelian p
group for some prime p. Next we claim that 3 ∤ [G : Tζ ] for any irreducible
character ζ 6= 1 of H. To see this, let ϕ be any irreducible character of G
such that (ζG, ϕ)G ≥ 1. So (ζ, ϕ|H)H ≥ 1 by 2.1. This in turn implies by 2.2,
ϕ|H = a

∑t
i=1 ζ

gi where t = [G : Tζ ]. If 3 | t, then 3 | ϕ(1), and so ϕ = χ. But
then, 3 · 1H = χ|H = ζg1 + ζg2 + ζg3; a contradiction to the linear independence
of irreducible characters.
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Thus, given any irreducible character ζ 6= 1 of H, there is a 3-Sylow sub-
group of G/H (∼= SL(2, 3)) stabilizing ζ. There are 4 3-Sylow subgroups of
G/H and any two of them generate G/H. So if two distinct 3-Sylow subgroups
of G/H stabilize the same character ζ 6= 1 of H, then G stabilizes ζ. In par-
ticular, M stabilizes ζ, and by Lemma 2.12, ζ extends to a linear character
ζ̂ of M . But then, M ′ = K ⊃ H and so ζ̂|H = ζ = 1H , whereas ζ 6= 1H .
Thus no two distinct 3-Sylow subgroups of G/H stabilize the same irreducible
character of H. Moreover, since the 3-Sylow subgroups in G/H are conjugate,
the number of irreducible characters of H fixed by any one 3-Sylow subgroup
of G/H is the same as the number of irreducible characters of H fixed by any
other 3-Sylow subgroup of G/H. By Brauers’ Lemma (2.7), the number of
irreducible characters of H fixed by a 3-Sylow subgroup of G/H is equal to the
number of elements of H fixed by it. Also, the set of elements of H fixed by a
3-Sylow subgroup of G/H form a subgroup of H. Thus if |H| = pn, and if the
number of elements fixed by a 3-Sylow subgroup of G/H is pn◦ (n◦ ≤ n), then,
noting that there are 4 3-Sylow subgroups of G/H, we get pn− 1 = 4(pn◦ − 1),
or equivalently, pn◦(pn−n◦ − 4) = −3. This clearly implies p = 3, n◦ = 1, and
n− n◦ = 1. Therefore |H| = 9. But we know that either H is normal minimal
or H/L is isomorphic to C3 ×C3. Hence, H is minimal normal and isomorphic
to C3 × C3. It is now easy to see by the Frattini argument, and noting that
H is minimal normal, that G is isomorphic to a semidirect product of SL(2, 3)
and C3 × C3. This proves Step 4 and the lemma.

Proof of Theorem 3.1. By Lemma 3.2, we only need to consider the case that
kerχ = K > 1. So suppose K > 1 and that the theorem is false. Let G be a
minimal counterexample. If K is not minimal normal in G, let N < K with
N ⊳ G. Then considering χ as an irreducible character of G/N , we see that
G/N satisfies the hypotheses of the theorem with kerχ = K/N > 1, and so by
the minimality of G, G/N is isomorphic to one of the groups listed in (c), (d),
and (e) of the conclusion of Theorem 3.1. This implies χ(1) = 2 or 3. But then,
Lemma 3.6 and 3.7 imply that G itself is isomorphic to one of the groups listed
in (c), (d), and (e), contrary to our assumption that G is a counter-example.
Therefore we may assume K is minimal normal in G. By Lemma 3.4, G/K
is a Frobenius group of the type listed in (b) and if M/K is the Frobenius
kernel, then M ′ = K. We can now apply Lemma 2.16 (see Remark 3.3(iii)) and
conclude that one of the following three holds.

(i) |M/K| = 3,

(ii) M is a p-group for some prime p,
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(iii) There exists an irreducible character ϕ 6= 1 of K and θ and irreducible
character of G such that (ϕG, θ)G ≥ 1 and (θ(1), q − 1) 6= 1.

If |M/K| = 3, then χ(1) = |M/K| − 1 = 2 and so by Lemma 3.6, G
is isomorphic to S4, contrary to the assumption that G is a counterexample.
If M is a p-group, then by Lemma 3.5, G is isomorphic to SL(2, 3), again
contradicting our assumption. So statement (3) above holds. Since χ(1) = q−1,
χ = θ by hypotheses. Then (ϕG, χ)G = (ϕ,χ|K)K ≥ 1. But χ|K = χ(1) · 1K
whereas ϕ 6= 1K . This is once again a contradiction and the proof of Theorem
3.1 is complete.

Remark 3.8. We observe that there is no group satisfying the hypotheses
of the Theorem 3.1 with kerχ = K > 1 and with (χ(1), 6) = 1.
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