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Abstract: In this paper let Q = {T1,T5,T3,T14,T5, 16,77, T3} be a subsemi-
lattice of X —semilattice of unions D where T7 C Ty, C T35 C 15 C T C T3,
ThChhclsCclIscITy Ccllg, Ty cly cTy,ClIs C g C g, Th C Ty C
T, CTy C 17 C Tg, T 75 (Z), T4\T3 75 (Z), Tg\T4 75 @, T6\T7 75 (Z), T7\T6 75 (Z),
T3UT, = T5, Tg UT7 = Ty, then we characterize the class each element of which
is isomorphic to ) by means of the characteristic family of sets, the character-
istic mapping and the generate set of (). Moreover, we calculate the number of
regular elements of Bx (D) for a finite set X.
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1. Introduction

Let X be an arbitrary nonempty set. Recall that a binary relation on X is a
subset of the cartesian product X x X. The binary operation o on Bx (the set
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of all binary relations on X) defined by for o, 8 € Bx
(x,z) €aoff < (z,y) € aand (y,z) € B, for some y € X

is associative. Therefore Bx is a semigroup with respect to the operation o.
This semigroup is called the semigroup of all binary relations on the set X.

Let D be a nonempty set of subsets of X which is closed under the union
i.e., UD" € D for any nonempty subset D’ of D. In that case, D is called a
complete X — semilattice of unions. The union of all elements of D is denoted
by the symbol D. Clearly, D is the largest element of D.

Let X be an arbitrary nonempty set and m be an arbitrary cardinal number.
¥ (X, m) is the class of all complete X — semilattices of unions of power m.

Let D and D’ be some nonempty subsets of the complete X — semilattices
of unions. We say that a subset D generates a set D' if any element from D’ is
a set-theoretic union of the elements from D.

Note that the semilattice D is partially ordered with respect to the set-
theoretic inclusion. Let () 2 D" C D and

N(D,D"y={ZeD|ZCZ forany Z' € D'}.

It is clear that N (D, D’) is the set of all lower bounds of D'. If N(D,D") # 0
then A(D,D’) = UN(D, D') belongs to D and it is the greatest lower bound of
D'

Further, let z,y € X, Y C X, o € By, T € D,0 # D' C D and t € D.
Then we have the following notations,

ya={reX|(a)ca}l , Ya=|Jya,
yey
V(D,a)={Ya|YeD} ,D={Z'eD|teZ},

Dy={Z'eD |TCZ} ,Dp={2'eD |2 CT}.

Let f be an arbitrary mapping from X into D. Then one can construct a

binary relation ay on X by ay = U ({x} x f(z)) .The set of all such binary

rzeX
relations is denoted by Bx (D). It is easy to prove that Bx (D) is a semigroup

with respect to the operation o. In this case Bx (D), is called a complete
semigroup of binary relations defined by an X —semilattice of unions D. This
structure was comprehensively investigated in Diasemidze [6].

If aofoa=«afor some f € Bx(D) then a binary relation « is called a
reqular element of Bx (D).
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Let o € By, Yf ={y € X |ya =T} and

V(X* ), if 0 ¢ D,
Vial =< V(X* a), if ) € V(X* a),
V(X*,a)U{0}, if 0 ¢ V(X*, &) and 0 € D.

Then a representation of a binary relation a of the form o = U (YF xT)
TeVa]
is called quasinormal. Note that, if a = U (Yp x T) is a quasinormal
TeVa]
representation of the binary relation «, then X = U Y and YANYS # 0
TeV(X*,a)

for T,7" € V(X*,a) which T # T’. In [7] they show that, if 8 is regular
element of Bx(D), then V[5] = V(D,f) and a complete X —semilattice of
unions D is an X [— semilattice of unions if A(D,D;) € D for any t € D and
7 = UA(D,Dt) for any nonempty element Z of D.

teZ
Let D’ be an arbitrary nonempty subset of the complete X —semilattice

of unions D. A nonempty element T° € D’ is a nonlimiting element of D' if
T\U(D',T) = T\ U (D'\D}) # 0. A nonempty element 7' € D’ is limiting
element of D" it T \I(D',T) = 0.

The family C(D) of pairwise disjoint subsets of the set D = UD is the
characteristic family of sets of D if the following hold

a) ND e C(D)

b) UC(D) =D
c) There exists a subset Cz(D) of the set C(D) such that Z = UCz(D) for
all Z e D.

A mapping 0 : D — C(D) is called characteristic mapping if Z = (ND) U
J 6(2) forall Z € D.

z'eD

The existence and the uniqueness of characteristic family and characteristic
mapping is given in Diasemidze [8]. Moreover, it is shown that every Z € D
can be written as Z = 6(Q)U U 0 (T), where Q(Z) =Q\{T € Q| ZCT}.

TeQ(Z)
A one-to-one mapping ¢ between two complete X — semilattices of unions

D" and D" is called a complete isomorphism if o(UDy) = . UD ©(T") for each
'eD1
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nonempty subset D; of the semilattice D’. Also, let @« € Bx(D). A complete
isomorphism ¢ between X I—semilattice of unions () and D is called a complete
a— isomorphism if Q@ = V(D,a) and ¢(0) =0 for § € V(D, o) and o(T)ao =T
for any T' € V(D, ).

Let Q and D’ are respectively some XI and X— subsemilattices of the
complete X — semilattice of unions D. Then

R, (Q,D'") = {a € Bx(D) | o regular element, ¢ complete v — isomorphism}

where ¢ : Q@ — D’ complete isomorphism and V(D,«) = Q. Besides, let us
denote

RQ, D)= |J R,QD)andR(D)= |J R@Q.D).
0ED(Q,D’) Q'eNQ)

where

®(Q,D')={¢|¢:Q— D"is a complete a—isomorhism 3o € Bx (D)},

Q(Q)=
{Q' | Q" is XI—subsemilattices of D which is complete isomorphic to Q} .

E. Schréder described the theory of binary relations in detail in the 1890s
([1]). The basic concepts and the properties of the theory were introduced in
”Principia mathemetica” Whitehead and Russell([2]). The theory of binary re-
lations has been improved by Riguet ([3] — [4]). Many researcher studied this
theory using partial transformations as Vagner did ([5]). Regular elements of
semigroup play an importent role in semigroup theory. Therefore Diasamidze
generate systmatic rules for understanding structure of a semigroup of binary re-
lations and characterization of regular elements of these semigroup in ([6] — [9]).
In general he studied semigroups but, in particular, he investigates complete
semigroups of the binary relations.

In this paper, we take in particular, Q = {11, T, T35, T4, T5,Ts,T7, T3} sub-
semilattice of X —semilattice of unions D where the elements T;’ s, i = 1,2,...,8
are satisfying the following properties, 77 C 15 C 135 C 1Ty C Tg C Tg,
W Ty cIys CIs Cc Ty CTg, Ty Cc 1o c Ty ¢ Ts C Tg C Ty, T1 C
ThcTy,ClTs CTy; C Ty, Ty 75 (Z), T4\T3 75 @, T3\T4 75 (Z), T6\T7 75 @, T7\T6 75 (Z),
T3UTy =T, T UTy = Tg. We will investigate the properties of regular elemant
a € Bx(D) satisfying V (D, «) = Q. Moreover, we will calculate the number of
regular elements of Bx (D) for a finite set X.
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As general, we study the properties and calculate the number of regular
elements of By (D) satisfying V (D, «a) = Q" where @’ is a semilattice isomorph
to Q. So, we characterize the class for each element of which is isomorphic to
() by means of the characteristic family of sets, the characteristic mapping and
the generate set of D.

2. Preliminaries

Theorem 2.1. [9, Theorem 10] Let o and o be binary relations of the
semigroup Bx (D) such that a o o o« = «. If D(«) is some generating set
of the semilattice V(D,«)\ {0} and o = U (Y x T) is a quasinormal

TeV(D,a)
representation of the relation o, then V(D,«) is a complete X1— semilattice
of unions. Moreover, there exists a complete a—isomorphism ¢ between the
semilattice V(D,«) and D' = {To | T € V(D,«a)}, that satisfies the following
conditions:

a) o(T)=To and p(T)a=T for all T € V(D, «)

b) U Y5 2 o(T) for any T € D(v),

T’ED(O&)T
¢) Y2 N o(T) # 0 for all nonlimiting element T of the set D ()

d) IfT is a limiting element of the set D (), then the equality UB (T) = T
is always holds for the set B (T) = {Z € D(a)p | YENp(T) # (Z)}.

On the other hand, if o € Bx (D) such that V(D,«) is a complete X I—
semilattice of unions. If for a complete a—isomorphism ¢ from V(D,«a) to a
subsemilattice D" of D satisfies the conditions b) — d) of the theorem, then « is
a regular element of Bx (D).

Theorem 2.2. [7, Theorem 1.18.2] Let D; = {11,...,T;}, X be finite set
and () #Y C X. If f is a mapping of the set X, on the Dj, for which f(y) = T
for some y € Y, then the numbers of those mappings f of the sets X on the set
Dj can be calculated by the formula s = GIXAYTL (j'Y‘ - (- 1)‘Y|) .

Theorem 2.3. [7, Theorem 6.3.5] Let X is a finite set. If ¢ is a fixed
element of the set ®(D, D’) and |2(D)| = mqy and q is a number of all auto-
morphisms of the semilattice D then |R(D')| = mg - q - |Ry(D,D’)].
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3. Results

Let X be a finite set, D be a complete X —semilattice of unions and @ =
{T1,T5,T3,T4,T5,T6,T7, T3} be X —subsemilattice of unions of D satisfies the
following conditions

TiC TyC T3C T5C T6C Tg, TiC ThC T3C T5C T7C Tg,
ThCcToC TyC T5C T6C Tg, TiCTyC TyC T5C T7C Tg,
1‘14\1"37é (Z)a 1‘13\1"47é (Z)a CT6\1‘177é 07 1‘17\1"67é 07

T5UT 4= T57T6UT7: Tg T # 0.

The diagram of the @ is shown in Figure 3.1. Let C' (Q) =
{P1, P2, P3, Py, Ps, Ps, P;, Py} is characteristic family of sets of
Qand 0:Q — C(Q), 0(T;) =P, (i=1,2,...,8) is character-
istic mapping.

Then, by using properties of characteristic family and char-
acteristic mapping for each element T; € () we can write

u J om.i=12....8)

TeQ(T)
where®Q (T}) = Q\{Z € Q | T; € Z},Q = UQ = Ty and 0(Q) = 0 (Ts) = F.

Hence,

Ty=PsU | J 6(T) = PyUP; U PgUPsUP,UP3UP,UP,

TeQ(Ts)
Ty= PsU U 0(T) = P{UPgUP5UP,UP3UPyUPY,
TGQ(T7)
Ty=PsU | ) 6(T) = PyUP;UP5UP,UP3UP,UP,
TeQ(Ts)
Ts=Psu | J 60(T) = PyUP,UP3UP,UP,
TeQ(Ts)
(3.1)
Ty,= PsU U 0(T) = PUP3UP5UP,
TGQ(T4)
Ts=PsU | ) 6(T) = PyUP,UP,UP,
TeQ(Ts)
Tr= PgU U 0 8UP1,
TGQ(TQ)

Ti=Psu | 0(T)=Pyud = Ps
TeQ(Ty)
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are obtained.

Lemma 3.1. Q is XI— semilattice of unions.

Proof. Let us show that the conditions of definition of XI— semilattice
of unions hold. First, let determine the greatest lower bounds of the each
semilattice Q¢ in @Q for t € Tg. Since Ty = PsUP; U PgUPsUP,UP3UP>UP,
and P; (i=1,2,...,8) are pairwise disjoint sets, by Equation (3.1) and the
definition of @, we get

(@ ,t e Py
{T87T6} ,t e P
{Tg,T7} ,t € P
{Tg,T7,T6} ,t € Ps
Q= {Ts, T+, T5, T5, T3 } L€ Py (32)
{TS,T7,T6,T5,T4} ,t € Ps
{Tg,T7,T6,T5,T4,T3} te Py
L {Tg,T7,T6,T5,T4,T3,T2} ,te P

By using Equation (3.2) and the definition of N(Q, @), we get

( {Tl} ,t e P
{Tl,TQ,Tg,T4,T5,T6} ,t e Pr
{Tl,TQ,Tg,T4,T5,T7} ,t e P

Ty, T, T35, Ty, Ts ,t e Ps
NQQ) = G e (33
{Tl,TQ,T4} ,t € P
{Tl,TQ} te P
L {Tl,TQ} ,te P

From the Equation (3.3) the greatest lower bounds for each semilattice Q)

(1T, ,te Py
T .t € Py
T ,te Py
T, teP
UN(Q.Q) =AQ.Q) =1 17 1 Cp (3-4)
Ty ,te Py
T ,tGPQ
\ T2 7t€P1
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are obtained. So, we get A(D, D;) € D for any t € Ts. Now Using the Equation
(3.4), we have

teTh =P =T =AQ,Q),
telhy=PRUP L =tePRorte P jA(Q,Qt)E{Tl,TQ}
=T, =T UTy, = UA(Qth)v
teTs
tely=RUP,UPRLUP = = AQ,Q;) € {T1,T>, T3}
=T3=T1UT,UT3 = UA(QaQt)u
teTs
tely=PRUPsUP,UP = éA(Q,Qt)E{Tl,TQ,TZl}
=Ti=TiUTUT, = | JAQ, Q)
teTy
t€T5 :P8UP4UP3UP2UP1 :>A(Q,Qt) :{Tl,TQ,Tg,T4}
=Ts=TYUTLUTsUT, = | JAQ,Q),
teTs
teTe=PRUP,UPU...UP = ANQ,Q) = {T1, 1>, 13,1y, T5, T}
:>T6:T1U---UT6: UA(Qth)a
teTy
teT; =RUPBUPU...UP = ANQ,Q) = {T1, T, 13,1y, T5, 17}
=T, =TU...UT;UT; = UA(Q,Qt),

teTy
te TS - T7 U T6 = A(Q7 Qt) = {T17T27T37T47T57T67T7}
=T =T UT7 = U AQ, Qy).
teTy
Then @ is a XI— semilattice of unions. U

Lemma 3.2. Following equalities are true for () where P;’s are pairwise
disjoint sets and union of these sets equals Q.

P =1\T7, Py = (TyNT3)\Tz, P3=T,\T3, P;=T3\T},
Ps = (T7QT6) \T5, Fs :T7\T6, P7:T6\T7, Py ="1T;.

Proof. Considering the (3.1), it is easy to see that equalities are true. [

Lemma 3.3. Let G = {T1,T5,T5,T4,T5,T¢,T7} be a generating set of Q.
Then the elements Tl, T5,T13,7Ty,Ts, T7 are nonlimiting elements of the set GTI,
Gr,, Gr,, Gr,, Gr,, G, respectively and Ty is limiting eleman of the set G, .
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i
Proof. Definition of D, following equations

Gr, ={T1},
GT2 = {T17T2}7
1, = {11, T, T3},
Gr, = {11, T2, Ty}, (3.5)

GT5 - {T17T27T37T47T5}7
Ts — {T17T27T37T47T57T6}7
Gr, = {1, T3, T3,T4,T5,T7} .

are obtained. Now we get the sets (G, T}), i € {1,2,...,7},

UGy, TY) UG\ {Th}) =0,

UGr,,Ty) = UG \{T2}) =T,
Z(QT37T3) = U(GTB\{T?)}) =15,
Z(QT47T4) - U(GT4\{T4}) =Ty,
WGy, T5) = UG \{T5)) =T,
WGy, Ts) = U(GT\{T6}) =T5,
UGy, T7) UG \{T7}) =T5.

Then we find nonlimiting and limiting elements of G’Ti, ie{l,2,...,7}.

T\(Gr,,T)) =Ti\0 =T,#0, T, nonlimiting element
To\l (éT2,T2) =T\T1 #0 T5 nonlimiting element
T\l(Gr,, T3) =T5\Ty #0 T3 nonlimiting element
T\(Gr,, Ty) =T\Ty #0 T4 nonlimiting element
T\(Gr,, T5) =T5\T5 =0 Ts limiting element

T\l(Gry, Ts) = Te\T5 # 0 Ts nonlimiting element
TA\(Gr,, T7) =To\Ts #0 T7 nonlimiting element

Therefore, the elements 71,75, T3, Ty, Ts, T7 are nonlimiting elements of the sets
GTI, GTQ, GTg, GT4, GTﬁ, GT7, respectively and Ty is limiting eleman of the

set Gy O
Now, we determine properties of a reguler element a of Bx(Q) where
8
V(D,a) =Q and « :U(Y?xTi ).
i=1

Theorem 3.4. Let a € Bx(Q) be a quasinormal representation of the
8

form o = U(Y?XTZ-) such that V(D,a) = Q. a € Bx (D) is a regular iff for
i=1
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some complete a-isomorphism ¢ : Q — D' C D, the following conditions are

satisfied:

Y2 o(T)),

YUY o(Ty),

Y UYPUYED o(Ty),

Y UYFUY 2 o(Ty),

YOUYS U YUY UYS UYED o(Ty), (3.6)
YrUYSUYS UYLUYS UY DD o(T,),

YE0p(Ty) # 0, Yine(Ts) # 0,

Yine(Ty) # 0, Yene(T) # 0,

YPne(T,) # 0.

Proof. Let G = {T1,T5,T5,T4,T5,Ts,T7} be a generating set of Q.

=: Since a € Bx (D) is regular and V (D, a) = @@ X —semilattice of unions,
by Theorem 2.1, there exits a complete isomorphism ¢ : Q — D’. By Theorem
2.1 (a), satisfying ¢ (T)a = T for all T € V(D,a). So, ¢ is complete a-
isomorphism. Applying the Theorem 2.1 (b) we have

Yo @(Tl)

Y UY3 2 o(Ty)

YUY UYE2 o(T')

Y UY3UYE2 o(Ty) (3.7)
YOUY s U Y UY,UYS O o(Ty)

YOUYS U YUY UYL uUYeD o(Ty),

YPUYS U YUY UYS UY SO o(T;)

Moreover, considering that the elements T7,T5,73,7Ty,Ts, T7 are nonlimiting
and using the Theorem 2.1 (¢), following properties

YlamW(Tl) #0, ng‘P(TQ) # 0,
Y3ne(Ts) #0, Yine(T,) # 0, (3.8)
YONe(Tg) # 0, Yine(T;) # 0.

are obtained. From Y{*2 ¢(T';), Y*Ne(T';) #0 always ensured. Also by using
Y& UYLUYSD o(T,) and Y U YSUYSD o(T,), we get

YUY U YR U YUY

(Y UYUYE) U (Y UYSUYS)
W(Tg) U ‘P(T4) uys

o(T'5) U Y5

W(T5)

i

Thus there is no need the condition Y\*UY 5 UY* UY,fUYSY O o(T';). Therefore
there exist an a—isomorphism ¢ which holds given conditions.
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<: Since V(D,a) = Q, V(D,«a) is XI—semilattice of unions. Let ¢ :
Q — D’ C D be complete a—isomorphism which holds given conditions. So,
considering Equation (3.6), satisfying Theorem 2.1 (a) — (¢). Remembering
that T is a limiting element of the set GT5, we constitute the set B (T5) =

{Z € Gr, | YENe(Ts) # (2)} If YPN(T) =0 we have
YeUYSUYRUYR = (Y UYPUYS) U (YE U YRUYS)
w(T YU e(Ty) = o(T5)

Il

So we get YPUYS U Y D o(T5) O ¢(T,) which is a contradiction with
Y Np(T,) # 0. Therefore Ty € B (T5 ) If YNo(T) =0 we have

YPUYSuUYrUY R UYsuYS)uU (Y UYsUY)

= (¥
2@( 3) Up(Ty) = ¢(T5)
5) 2

So we get YAUYS UYY D o(T ©(T3) which is a contradiction with
YNp(T3) # 0. Therefore T5 € B (T5). We have UB (T3) = T3 UT, = Ts.
By Theorem 2.1, we conclude that « is the regular element of the Bx (D). O

Now we calculate the number of regular elements «, satisfying the hyphoth-
esis of Theorem 3.4. Let o € Bx (D) be a regular element which is quasinormal
8

representation of the form « :U(Y? xT;) and V(D,a) = Q. Then there exist
i=1

a complete a— isomorphism ¢ : Q@ — D' = {p(T1), o(T2),...,¢(T3)} satistying

the hyphothesis of Theorem 3.4. So, a € R,(Q,D’). We will denote ¢(T;) =

T;, i=1,2,...8. Diagram of the D' = {T1, T2, Ts, T4, T5, Ts, T7, Ts} is

shown in Flgure 3.2. Then the Equation (3.6) reduced to below equation.

Y1a2T1

Y U Y OTs

YU YUY DT,

YU YUY $OT,

YUY S UYS UYL UYL UYED T, (3.9)

YUY U Y UY P UY UY S DTy

Ynp(Ty) # 0, Y500(Ts) # 0,

Yine(T,) # 0, Ygne(Te) # 0,

Y7ne(T,) # 0.
On the other hand, the image of the sets in Lemma 3.2 under
Figure 3.2 the a— isomorphism ¢

T

1

T1,(TsNTy)\T1,Ts\Ts, Ts\T4,(T7 N T6)\T5,T7\Ts,T6\T7, X\Ts
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are also pairwise disjoint sets and union of these sets equals X.

Lemma 3.5. For every a € Ry,(Q,D’), there exists an ordered system
of disjoint mappings which is defined {T'1, (T3 N T4)\T1,T4s\T3,T3\T4, (T7 N
Te)\T'5,T7\Tg, T¢\T7, X\Ts}. Also, ordered systems are different which cor-
respond to different binary relations.

Proof. Let f, : X — D be a mapping satisfying the condition f,(t) = t«
for all t € X. We consider the restrictions of the mapping f, as fia, foa,
éa, i4a,_f5a_, fﬁg, f_7a, fga_on the sets T, (T3 N T4)\T1, T4\T3, Tg\T4, (T7 N
T6)\T5, T7\T6, T6\T7, X\Tg, respectively.

Now, considering the definition of the sets Y%, ¢ = 1,2,...,8, together with
the Equation (3.9) we have

tETl :>t€§/1a:>tOéZT1:>f1a(t):T1, VtETl.

te (T:}, ﬂT4)\Tl =tec (T:}, ﬂT4) - Yla U Y2a
= ta € {Tl,TQ} . o
= fga(t) S {Tl,TQ}, vVt € (Tg ﬂT4)\T1.

Since YQO‘HTQ # (), there is an element ¢y € YQO‘OTQ. Then toa = Ty and ty € Ts.
If to € Ty then to € T C Y®. Therefore, toa = T WhiCE is _in contradiction
with the equality toaw = Th. So fau(t2) = To for some to € TH\T.

t e T4\Tg =1te T4\Tg - T4 - §/1a U Y2a U Yf
= ta € {Tl,TQ,T4}
= fga(t) S {Tl,TQ,T4}, Vt € T4\T3.

Y& NTy # 0 so there is an element 4, € Y, N Ty. Then tya = Ty and t4 € Ty.
If ty € T3 then ty € T3 C Y UYL UYL Thus tya € {Ty,Ts, T3} which is in
contradiction with the equality t4a = Ty4. So there is an element t4 € T4\Tg
with f3a(t4) =1Ty.

te 73\74 =te Tg\T4 - T3 - Yla U Y2a U Yz))a
:>ta€{T1,T2,T3} o
= f4a(t) S {Tl,TQ,Tg}, YVt € T3\T4.

Since Y3 ﬂ_Tg # (), there is an element t3 with t3a = T5 and t3 € Ts. Ifts €Ty
then t3 € Ty C Y U Y5 UY,". Therefore, tsav € {T1,T5, T4} which contradicts
to the equality t3a = T3. So there is an element t3 € T3\Ty with fi,(t3) = T5.

tc (T7 N T(;)\Tg, =1c (T7 N T(;)\Tg, - T'y ﬂTG - YlaUYgl U YSQUYEUY?
= ta € {T17T27T37T47T5} o o o
= f5a(t) S {Tl,TQ,T37T4,T5}, YVt € (T7 N T6)\T5
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tc T'y\TG =1c T7\T6 - T7 - YlaUYg U YfUY%UY%UY%
= ta € {1, T3, T3, T4, T5, T7 } o
= foa(t) € {11, T2, T3, Ty, 15,17}, ¥Vt € T7\T.

Also, there is an element t; € Y:* N T; since Y2 NT; # (. Then t;a = T4
and t; € T7. If t7 € T then t; € Tg C YPUYS U YLUYSUY 2UYE. So tra €
{Th,T5,T5,Ty,T5,Ts}. However this contradicts to trae = T7. So fea(t7) = 17
for some t7 € T7\T.

tc T6\T7 =1c T6\T7 - TG - YlaUY% U YfUY%UY%UY%
=to € {T17T27T37T47T57T6} o
= fra(t) € {11, T2, T3, Ty, 15,16} , YVt € Te\T7.

Smilarly there is an element tg with tga = T and tg € T since Yt N Te #
0. If ts € T7 then tg € T7 C YPUYS U YUY SUY 2UYS. Therefore, tsar €
{Th,T5,T3,Ty,T5,T7} which is in contradiction with the equality tgac = Ts. So
fra(te) = Tg for some tg € Tg\T'7.

8
teX\Ts=>te X\Ts C X = JY* = ta € Q= fsalt) € Q, Vt € X\Ts.
=1

Therefore, for every binary relation o € R,(Q,D’) there exists an ordered

SyStem (flou f2au f3ou f4ou f5au f6ou f7ouf8a)-
On the other hand, suppose that for o, f € R,(Q, D’) which o # 3, be ob-

tained foz — (flon f20f7 f3a7 f4a7 f50¢7 f6a7 f7017 fSOt) and fﬂ = (flﬁa fQﬁa f3ﬂ7 f4ﬂ7
f5,57 fﬁﬂa f7,57 fS,B) If foz = fﬁv we get

fa=[fa= falt)=fs(t), Vie X = ta=t3, Vtce X = a=0

which contradicts to o # . Therefore different binary relations’s ordered
systems are different. O

Lemma 3.6. Let f = (f1, fo, f3, fa, f5, f6, f7, [s) be ordered system from
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X in the semilattice D such that

frly ={Th} f1() = Th, o
fo: (T3 NTO\T = {Th, To}, fo(t) € {T1, T2} and fa(t2) = Tp I to € To\T1,
f3Ta\Ts = {11, T3, Ty}, f5(t) € {11, T2, Tu} and f3(ta) =Ty 3 t4 € Ty\T5,
faTs\Ta = {11, 15, T3}, fa(t) € {11, T2, T3} and fa(t3) = T3 3 t3 € T3\T'4,
f5: (_T7D Te)\T5 — {T1,T5,T5, Ty, 15}, f5(t) € {11, T, 13,14, 15},

fo: T7\T¢ — {Tl,TQ,T:}_,T4,_T57T7}7 fo(t) e {11, 1o, T3, Ty, T5,T7}

and f6(t7) =17 dt7 € T7\T6,

and f7(t6) =T d tg € TG\T7,

fo: X\Ts =Q, fsalt) € Q.

Then = U ({zx}x f(x)) € Bx(D) is regular and ¢ is complete f—isomorphism
zeX
. So p € R,(Q, D).

Proof. First we see that V(D, ) = Q. Considering V(D, ) ={Y5|Y € D},
the properties of f mapping, T;3 = U zf and D' C D, we get
iEGTi

T € Q:>Tl,8:T1 =T € V(D,ﬁ),

T EQéTgﬁ:TlLJTg:TQéTQ EV(D,,B),
T3EQ:>T3,3:T1UT2UT3:T3éT3EV(D,,B),
T4EQ:>T4,3:T1UT2UT3UT4UT5:T4:>T4€V(D,ﬁ),

Ts EQ:>T5,8:(73UT4),8:T3ﬁUT4ﬁ:T3UT4:T5:>T5EV(D,ﬁ),
T6 S Q:>T6,8:T1UT2UT3UT4UT5UT6 :T6 :>T6 S V(D,ﬁ),
Tr€Q=T8=T1 UTLUTsUT, UTs UT; = T; = T7 € V(D, B),
TgEQjTg,@Z(TﬁUTﬂ,@:T6ﬁUT7ﬁ:T6UT7:T8:>T8EV(D,ﬁ).

Then Q C V(D, 3). Also,

ZeV(D,p)=2Z=Yp, Y €D
=Z=YB8=|Jus=|JflweQ

yey yey

since f(y) € @ and @ is closed set-theoretic union. Therefore, V(D, ) C Q.
Hence V(D, 8) = Q.

Also, 8 = U (YTﬁ X T) is quasinormal representation of [ since
TeV(X*,8)
0 ¢ Q. From the definition of 3, f(z) = x for all z € X. It is easily seen that



REGULAR ELEMENTS OF THE COMPLETE SEMIGROUPS... 213

8
V(X*,8) = V(D,8) = Q. Weget 6= | J (¥ x 1)
=1
On the other hand
teT) = t=ft) =Ty =teY =T, CYY},
t e Tg = Tlu ((Tg 074)\71) = t,@ = f(t) S {Tl,TQ} =1te Yl’BUYg
=T, CYiuy?
te Tg = Tlu ((Tg ﬂT4)\T1) U (Tg\T4) =0 = f(t) € {Tl,TQ,Tg}
—tey Uy uYyy
ST, cYfuyfuy?s,
t e T4 = Tlu ((Tg ﬂT4)\T1) @] (E\Tg) =0 = f(t) € {Tl,TQ,T4}
steyluySuy/
T, cY/uy/uy/f,
teTe =(Te\T7) U ((T7NTe)\T5) UT3UTy
= t/B = f(t) € {T17T27T37T47T57T6}
= tevluyiuviuyiuyluy)
=T C YuYS vy Uy uyPuy?,
te T7 = (T7\T6) U ((T7 N T6)\T5) U Tg ) T4
= t/B = f(t) € {T17T27T37T47T57T7}
= tevluyjuvluy?iuyluy?
=T C YUY uY Uy uyPuy?,

Also, by using fa(t2) = To, 3 to € To\T1, we obtain YfﬁTg # (). Similarly,
from properties of f3, f1, fe, f7, be seen YfﬂTg # 0, YfﬂT4 # ), YgﬂTﬁ # )
and YfﬂTy # (). Therefore the mapping ¢ : Q — D' = {Tl,Tg, .. ,Tg} to be
defined (T;) = T; satisfy the conditions in (3.9) for 8. Hence ¢ is complete
B—isomorhism because of ¢ (T) 3 =TS =T, for all T € V (D, 3). By Theorem
3.4, B € R,(Q, D). 0

Therefore, there is one to one correspondence between the elements of
R,(Q,D’) and the set of ordered systems of disjoint mappings.

Theorem 3.7. Let X be a finite set and () be X I— semilattice. If
D' ={T1,T9,T3,T4,T5,T6,T7,Ts}
is a— isomorphic to @ and Q(Q) = myg, then

R(D ot (2T QIS ) (57| ol
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. <3|73\T4|_2|73\T4|> ,5|(T7ﬂfa)\75| . (6|T7\T6|_5|T7\T6|>
. (6‘76\77‘_5’76\77’) .8’X\Ts|

Proof. Lemma 3.5 and Lemma 3.6 show us that the number of the ordered

system of diSjOint mappings (flom f2om f3a7 f4om f50m fﬁaa f7om f8a) is equal to
|R,(Q,D")|, which o € Bx (D) regular element, V(D,a) = Q and ¢ : Q — D’
is a complete av—isomorphism.

From the Theorem 2.2, the number of the mappings fia, foa, f3as f1as f5as
fea, fra and fs, are respectively as

1’ 2’(?3074)\72‘(2’?2\71| _ 1) , (3‘74\73‘ _ 2‘?4\73‘ , 3‘73\74‘ _ 2‘?3\74‘) ,

5ITTo\Ts| (alﬂ\ﬂl _ 5IT7\TeI) , (alfe\ﬂl _ 5ITG\T7I) gIX\Ts],

Now, we determine the number of regular elements
|Rp(@Q, D)|= (2ATrTNTel T 1)) (5Tl 9T Ta])
' (3‘73\74‘ - Q‘TB\T“‘) 5| T To)\Ts| . (6\77\76\ B 5177\761)

. (6‘76\77‘ _ 5‘76\770 .8‘X\Ts‘

The number of all automorphisms of the semilattice @) is ¢ = 4. These are

I_<T1T2T3T4T5T6T7T8> _(T1T2T3T4T5T6T7T8>
CTN N T Ty Ty Ty Ts Ty Ty N\ TN T T3 Ty Ts Tr Ts Ty
9:(T1T2T3T4T5T6T7T8> T:(T1T2T3T4T5T6T7T8)

Ty Ty Ty T3 T5 T7 Tg T3y N Ty 131516 77 T )

Therefore by using Theorem 2.3,
|R(D’)\:m0 . <2|(Tng4)\TQ|(2|TQ\Tl| _ 1)) ) <3|T4\Tg| - 2|T4\Tg|)
) (3173\@] _ 2\@,\@\) . 5|(T7NTe\Ts5| | (6\77\76\ _ 5\%\@\)
: (6|76\T7| . 5|TG\T7|) 8l X\Ts]
is obtained. O
Example 1. Let X ={1,2,3,4,5,6} and

D = {Tl :{1}7 TQ:{172}7 T3:{17273}7 T4:{17274}7 T5:{1727374}7
T6:{1,2,3,4,5}, T7:{1,2,3,4,6}, T8:{1,2,3,4,5,6}}.
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D is an X —semilattice of unions since D is closed the union of sets. Moreover
D satisfies the conditions in (3.1). Then, D is an X I—semilattice. Let D = Q).
Therefore |2(Q)| = 1. Besides, the number of all automorphisms of Q is ¢ = 4.
By using Theorem 3.7

RQ) = 1-4- (AT @TAT] 1)) . (37| ol TaTs|
3[Ts\Ta| _ o|Ts\Tu|) . |(T-T6)\Ts| . (6|T7\Tsl B 5|T7\TG|>
6/76\T7| _ 5|Te\T1[) gl X\Ts|

=4

is obtained.
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