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1. Introduction

Pawlak [9,10] introduced the rough set theory as a formal tool to deal with im-
precision and uncertainty in the data analysis. The relationship between rough
set theory and topological spaces was investigated in sets [6], on left-continuous
t-norm [12]. Hájek [2] introduced a complete residuated lattice which is an
algebraic structure for many valued logic. It is an important mathematical tool
for algebraic structure of fuzzy contexts [1-5, 7,8, 11-16]. By using the concepts
of lower and upper approximation operators, information systems and decision
rules are investigated in complete residuated lattices [1,2,7,8,11,12]. Kim [5] in-
vestigated between fuzzy rough set and fuzzy quasi-uniform spaces in complete
residuated lattices. Bělohlávek [1] developed the notion of fuzzy contexts using
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Galois connections with R ∈ LX×Y on a complete residuated lattice. Zhang
[13,14] introduced the fuzzy complete lattice which is defined by join and meet
on fuzzy posets. Kim [4] investigated the properties of join (resp. meet, meet
join, join meet) preserving operators in complete residuated lattices.

In this paper, we investigate the properties of join preserving maps in com-
plete residuated lattice. By using the concepts of the fuzzy complete lattices
[13,14], we generalize upper approximation operators without fuzzy relations
in complete residuated lattices. Moreover, we investigate the relations between
join preserving maps and Alexandrov fuzzy topologies. We give their examples.

2. Preliminaries

Definition 2.1. [1,2] A structure (L,∨,∧,⊙,→,⊥,⊤) is called a complete

residuated lattice iff it satisfies the following properties:
(L1) (L,∨,∧,⊥,⊤) is a complete lattice where ⊥ is the bottom element and

⊤ is the top element;
(L2) (L,⊙,⊤) is a monoid;
(L3) adjointness properties hold,i.e.

x ≤ y → z iff x⊙ y ≤ z.

A operator ∗ : L → L defined by a∗ = a → ⊥ is called strong negations if
a∗∗ = a.

⊤x(y) =

{

⊤, if y = x,

⊥, otherwise.
⊤∗

x(y) =

{

⊥, if y = x,

⊤, otherwise.

In this paper, we assume that (L,∨,∧,⊙,→,∗ ,⊥,⊤) be a complete residu-
ated lattice with a strong negation ∗.

Definition 2.2. [13,14] Let X be a set. A function eX : X × X → L is
called:

(E1) reflexive if eX(x, x) = 1 for all x ∈ X,
(E2) transitive if eX(x, y)⊙ eX(y, z) ≤ eX(x, z), for all x, y, z ∈ X,
(E3) if eX(x, y) = eX(y, x) = 1, then x = y.
If e satisfies (E1) and (E2), (X, eX ) is a fuzzy preorder set. If e satisfies

(E1), (E2) and (E3), (X, eX ) is a fuzzy partially order set (simply, fuzzy poset).

Example 2.3. (1) We define a function eL : L×L → L as eL(x, y) = x → y.
Then (L, eL) is a fuzzy poset.
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(2) We define a function eLX : LX×LX → L as eLX (A,B) =
∧

x∈X(A(x) →
B(x)). Then (LX , eLX ) is a fuzzy poset from Lemma 2.10 (9).

Definition 2.4. [13,14] Let (X, eX ) be a fuzzy poset and A ∈ LX .
(1) A point x0 is called a join of A, denoted by x0 = ⊔A, if it satisfies
(J1) A(x) ≤ eX(x, x0),
(J2)

∧

x∈X(A(x) → eX(x, y)) ≤ eX(x0, y).
A point x1 is called a meet of A, denoted by x1 = ⊓A, if it satisfies
(M1) A(x) ≤ eX(x1, x),
(M2)

∧

x∈X(A(x) → eX(y, x)) ≤ eX(y, x1).

Remark 2.5. [13,14] Let (X, eX) be a fuzzy poset and A ∈ LX .
(1) If x0 is a join of A, then it is unique because eX(x0, y) = eX(y0, y) for

all y ∈ X, put y = x0 or y = y0, then eX(x0, y0) = eX(y0, x0) = ⊤ implies
x0 = y0. Similarly, if a meet of A exists, then it is unique.

(2) x0 is a join of A iff
∧

x∈X(A(x) → eX(x, y)) = eX(x0, y).
(3) x1 is a meet of A iff

∧

x∈X(A(x) → eX(y, x)) = eX(y, x1).

Remark 2.6. [13,14] Let (L, eL) be a fuzzy poset and A ∈ LL.
(1) Since x0 is a join of A iff

∧

x∈L(A(x) → eL(x, y)) =
∧

x∈L(A(x) →
(x ⇒ y)) =

∨

x∈L(x ⊙ A(x)) → y = eL(x0, y) = x0 → y, then x0 = ⊔A =
∨

x∈L(x⊙A(x)).
(2) Since x0 is a join of A iff

∧

x∈L(A(x) → eL(x, y) =
∧

x∈L(A(x) → (y →
x)) =

∧

x∈L(y → (A(x) → x)) = y →
∧

x∈L(A(x) → x) = y → ⊓A, then
⊓A =

∧

x∈L(A(x) → x).

Remark 2.7. [13,14] Let (LX , eLX ) be a fuzzy poset and Φ ∈ LLX

.
(1) We have ⊔Φ =

∨

A∈LX (Φ(A)⊙A) from:

∧

A∈LX (Φ(A) → eLX (A,B))
= eLX (

∨

A∈LX (Φ(A) ⊙A), B) = eLX (⊔Φ, B).

(2) We have ⊓Φ =
∧

A∈LX (Φ(A) → A) from:

∧

A∈LX (Φ(A) → eLX (B,A) =
∧

A∈LX eLX (B, (Φ(A) → A))
= eLX (B,

∧

A∈LX (Φ(A) → A)).

Definition 2.8. [13,14] Let (LX , eLX ) and (LY , eLY ) be fuzzy posets. A
operator H : LX → LY is a join preserving map if H(⊔Φ) = ⊔H→(Φ) for all

Φ ∈ LLX

, where H→(Φ)(B) =
∨

H(A)=B Φ(A).
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Theorem 2.9. [4] Let X and Y be two sets. Let (LX , eLX ) and (LY , eLY )
be fuzzy posets. Then H : LX → LY is a join preserving map iff H(α ⊙ A) =
α⊙H(A) and H(

∨

i∈I Ai) =
∨

i∈I H(Ai) for all A,Ai ∈ LX , and α ∈ L.

In this paper, H : LX → LY is called a join preserving map if H(α⊙ A) =
α⊙H(A) and H(

∨

i∈I Ai) =
∨

i∈I H(Ai) for all A,Ai ∈ LX , and α ∈ L.

Lemma 2.10. [1,2] Let (L,∨,∧,⊙,→,∗ ,⊥,⊤) be a complete residuated
lattice with a strong negation ∗. For each x, y, z, xi, yi ∈ L, the following prop-
erties hold.

(1) If y ≤ z, then x⊙ y ≤ x⊙ z.
(2) If y ≤ z, then x → y ≤ x → z and z → x ≤ y → x.
(3) x → y = ⊤ iff x ≤ y.
(4) x → ⊤ = ⊤ and ⊤ → x = x.
(5) x⊙ y ≤ x ∧ y.

(6) x⊙ (
∨

i∈Γ yi) =
∨

i∈Γ(x⊙ yi) and (
∨

i∈Γ xi)⊙ y =
∨

i∈Γ(xi ⊙ y).
(7) x → (

∧

i∈Γ yi) =
∧

i∈Γ(x → yi) and (
∨

i∈Γ xi) → y =
∧

i∈Γ(xi → y).
(8)

∨

i∈Γ xi →
∨

i∈Γ yi ≥
∧

i∈Γ(xi → yi) and
∧

i∈Γ xi →
∧

i∈Γ yi ≥
∧

i∈Γ(xi →
yi).

(9) (x → y)⊙ x ≤ y and (y → z)⊙ (x → y) ≤ (x → z).
(10) x → y ≤ (y → z) → (x → z) and x → y ≤ (z → x) → (z → y).
(11)

∧

i∈Γ x
∗
i = (

∨

i∈Γ xi)
∗ and

∨

i∈Γ x
∗
i = (

∧

i∈Γ xi)
∗.

(12) (x⊙ y) → z = x → (y → z) = y → (x → z) and (x⊙ y)∗ = x → y∗.
(13) x∗ → y∗ = y → x and (x → y)∗ = x⊙ y∗.
(14) y → z ≤ x⊙ y → x⊙ z.

3. Join Preserving Maps, Fuzzy Preorders and Alexandrov Fuzzy

Topologies

Definition 3.1. [4] A join preserving operator H : LX → LX is called an upper

approximation operator iff it satisfies the following conditions:

(H1) A ≤ H(A),

(H2) H(H(A)) ≤ H(A), for all A ∈ LX .

Example 3.2. Let R ∈ LX×X be a fuzzy relation. Define HR : LX → LX

as follows
HR(A)(y) =

∨

x∈X

(A(x) ⊙R(x, y)).



JOIN PRESERVING MAPS, FUZZY PREORDERS... 707

(1) Since HR(α ⊙ A) = α ⊙ HR(A) and HR(
∨

i∈Γ Ai) =
∨

i∈Γ HR(Ai), by
Theorem 2.9, HR is a join preserving map.

(2) If R is a fuzzy preorder, then HR is an upper approximation operator
from the followings:

HR(HR(A))(z) =
∨

y∈X(HR(A)(y) ⊙R(y, z))

=
∨

y∈X((
∨

x∈X(A(x) ⊙R(x, y))) ⊙R(y, z))

≤
∨

x∈X(A(x)⊙R(x, z)) = HR(A)(z).

Theorem 3.3. Let H be an upper approximation operator. If H−1 is a
join preserving map such that H−1(⊤x)(y) = H(⊤y)(x) for all x, y ∈ X, then
H−1 is an upper approximation operator.

Proof. Since A =
∨

x∈X(A(x) ⊙⊤x), we have

(H1) Since H−1(⊤x)(x) = H(⊤x)(x) ≥ ⊤x(x) = ⊤, we have

H−1(A)(x) = H−1(
∨

p∈X(A(p)⊙⊤p))(x)

=
∨

p∈X(A(p)⊙H−1(⊤p)(x))

≥ A(x)⊙H−1(⊤x)(x) = A(x).

(H2)

H−1(H−1(A))(z) = H−1(H−1(
∨

x∈X(A(x)⊙⊤x))(z)
=

∨

x∈X(A(x) ⊙H−1(H−1(⊤x))(z)
=

∨

x∈X(A(x) ⊙
∨

y∈X(H−1(⊤x)(y) ⊙H−1(⊤y)(z))

=
∨

x∈X(A(x) ⊙
∨

y∈X(H(⊤y)(x)⊙H(⊤z)(y))

=
∨

x∈X(A(x) ⊙H(⊤z)(x)) =
∨

x∈X(A(x)⊙H−1(⊤x)(z))
= H−1(A)(z).

Theorem 3.4. LetH andH−1 be join preserving maps such thatH−1(⊤x)(y)
= H(⊤y)(x) for all x, y ∈ X. Then we have the following properties.

(1)
∧

A∈LX (H(A)(x) → H(A)(z)) =
∧

y∈X(H(⊤y)(x) → H(⊤y)(z)) and
∧

A∈LX (H−1(A)(x) → H−1(A)(z)) =
∧

y∈X(H−1(⊤y)(x) → H−1(⊤y)(z)) =
∧

y∈X(H(⊤x)(y) → H(⊤z)(y)).

(2) If H and H−1 are upper approximation operators, then

H(⊤x)(z) =
∧

A∈LX (H(A)(x) → H(A)(z))
=

∧

y∈X(H(⊤y)(x) → H(⊤y)(z)),



708 Y.C. Kim

H−1(⊤z)(x) =
∧

A∈LX (H−1(A)(z) → H−1(A)(x))
=

∧

y∈X(H−1(⊤y)(z) → H−1(⊤y)(x))

=
∧

y∈X(H(⊤z)(y) → H(⊤x)(y)).

Proof (1) Since A =
∨

x∈X(A(x)⊙⊤x), we have

H(A)(x) → H(A)(z)
= H(

∨

p∈X(A(p)⊙⊤p))(x) → H(
∨

w∈X(A(w) ⊙⊤w))(z)

=
∨

u∈X(A(u) ⊙H(⊤u)(x)) →
∨

u∈X(A(u) ⊙H(⊤u)(z))
≥

∧

u∈X((A(u) ⊙H(⊤u)(x)) → (A(u) ⊙H(⊤u)(z))) (Lemma 2.10 (8))
≥

∧

u∈X(H(⊤u)(x)) → H(⊤u)(z)). (Lemma 2.10 (14))

(2) Since
∨

y∈X(H(⊤x)(y) ⊙ H(⊤y)(z)) = H(
∨

y∈X(H(⊤x)(y) ⊙ ⊤y)(z)) =
H(H(⊤x))(z) ≥ H(⊤x)(z), then H(⊤y)(z) ≤

∧

x∈X(H(⊤x)(y) → H(⊤x)(z)) ≤
H(⊤y)(y) → H(⊤y)(z) ≤ ⊤y(y) → H(⊤y)(z) = H(⊤y)(z). By (1), H(⊤y)(z) =
∧

x∈X(H(⊤x)(y) → H(⊤x)(z)) =
∧

A∈LX (H(A)(x) → H(A)(z)). Other case is
similarly proved.

Example 3.5. Let R ∈ LX×X be a fuzzy relation. Define HR : LX → LX

as follows

HR(A)(y) =
∨

x∈X

(A(x) ⊙R(x, y)).

H−1
R (A)(y) = HR−1(A)(y) =

∨

x∈X

(A(x)⊙R−1(x, y)) =
∨

x∈X

(A(x) ⊙R(y, x)).

(1) Since HR(⊤x)(y) = R(x, y), for Rx(y) = R(x, y) = Ry(x),

∧

A∈LX (HR(A)(x) → HR(A)(z)) =
∧

y∈X(R(y, x) → R(y, z))

=
∧

y∈X(Rx(y) → Rz(y)),
∧

A∈LX (H
−1
R (A)(x) → H−1

R (A)(z)) =
∧

y∈X(R(x, y) → R(z, y))

=
∧

y∈X(Rx(y) → Rz(y)).

(2) If R is a fuzzy preorder, then R−1 is a fuzzy preorder. Moreover, HR

and H−1
R are upper approximation operator such that

R(x, z) = HR(⊤x)(z) =
∧

A∈LX (HR(A)(x) → HR(A)(z))
=

∧

y∈X(R(y, x) → R(y, z)) =
∧

y∈X(Rx(y) → Rz(y))

= H−1
R (⊤z)(x) =

∧

A∈LX (H
−1
R (A)(z) → H−1

R (A)(x))
=

∧

y∈X(R(z, y) → R(x, y)) =
∧

y∈X(Rx(y) → Rz(y))
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Definition 3.6. An operator T : LX → L is called an Alexandrov fuzzy

topology on X iff it satisfies the following conditions:
(T1) T(α) = ⊤,
(T2) T(

∧

i∈Γ Ai) ≥
∧

i∈ΓT(Ai) and T(
∨

i∈ΓAi) ≥
∧

i∈ΓT(Ai),
(T3) T(α⊙A) ≥ T(A),
(T4) T(α → A) ≥ T(A).

Theorem 3.7. Let T : LX → L be an Alexandrov fuzzy topology. Define
T∗(A) = T(A∗). Then T∗ is an Alexandrov fuzzy topology.

Proof. (T1) T∗(α) = T((α∗) = ⊤.

(T2) T∗(
∨

i∈ΓAi) = T(
∧

i∈ΓA
∗
i ) ≥

∧

i∈Γ T(A∗
i ) =

∧

i∈ΓT
∗(Ai) and

T∗(
∧

i∈Γ

Ai) = T(
∨

i∈Γ

A∗
i ) ≥

∧

i∈Γ

T(A∗
i ) =

∧

i∈Γ

T∗(Ai).

(T3)
T∗(α⊙A) = T((α⊙A)∗) = T(α → A∗)

≥ T(A∗) = T∗(A).

(T4)
T∗(α → A) = T((α → A)∗) = T((α ⊙A∗)∗∗)

= T(α⊙A∗) ≥ T(A∗) = T∗(A).

Theorem 3.8. Let H be a join preserving map. Define TH : LX → L as

TH(A) =
∧

x∈X

(H(A)(x) → A(x)) = eLX (H(A), A).

Then we have the following properties.

(1) TH is an Alexandrov fuzzy topology on X.
(2) TH(A) =

∧

x,y∈X(H(⊤x)(y) → (A(x) → A(y)) such that TH(A) ≥
∧

x 6=y∈X H∗(⊤x)(y).
(3) If H is an upper approximation operator, then TH(H(⊤x)) = ⊤.

(4) If H−1 is a join preserving map such that H−1(⊤x)(y) = H(⊤y)(x) for
all x, y ∈ X. Define T∗

H(A) = TH(A∗). Then T∗
H = TH−1 is an Alexandrov

fuzzy topology.
(5) If H is an upper approximation operator, then H−1 is an upper approx-

imation operator such that

TH(H−1∗(⊤x)) = TH−1(H∗(⊤x)) = ⊤.
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Proof. (1) For α =
∨

y∈X(α(y)⊙⊤y), H(α)(x) = H(
∨

y∈X(α(y)⊙⊤y))(x) =
∨

y∈X(α(y) ⊙H(⊤y)(x)) = α⊙
∨

y∈X H(⊤y)(x) ≤ α. Thus,

(TH)(α) =
∧

x

(H(α)(x) → α(x)) = ⊤.

TH(
∨

i∈ΓAi) =
∧

x(H(
∨

i∈ΓAi)(x) →
∨

i∈ΓAi(x))
=

∧

x(
∨

i∈ΓH(Ai)(x) →
∨

i∈ΓAi(x))
≥

∧

x(
∧

i∈Γ(H(Ai)(x) → Ai(x))) (by Lemma 2.10(8))
=

∧

i∈ΓTH(Ai).

Since H(
∧

i∈Γ Ai) ≤
∧

i∈Γ H(Ai), we have

TH(
∧

i∈ΓAi) =
∧

x(H(
∧

i∈ΓAi)(x) →
∧

i∈ΓAi(x))
≥

∧

x(
∧

i∈ΓH(Ai)(x) →
∧

i∈ΓAi(x))
≥

∧

x(
∧

i∈Γ(H(Ai)(x) → Ai(x))) (by Lemma 2.10(8))
=

∧

i∈ΓTH(Ai).

Since
α⊙A(x)⊙ (A(x) → A(y)) ≤ α⊙A(y)
iff A(x) → A(y) ≤ α⊙A(x) → α⊙A(y)

TH(α⊙A) =
∧

x(H(α⊙A)(x) → α⊙A(x))
=

∧

x(α⊙H(A)(x) → α⊙A(x))
≥

∧

x(H(A)(x) → A(x)) = TH(A).

Since

α⊙ (α → A(x)) ⊙ (A(x) → A(y)) ≤ A(x)⊙ (A(x) → A(y)) ≤ A(y)
iff A(x) → A(y) ≤ (α → A(x)) → (α → A(y))

α⊙H(α → A) = H(α⊙ (α → A)) ≤ H(A)
iff H(α → A) ≤ α → H(A)

TH(α → A) =
∧

x(H(α → A)(x) → (α → A(x)))
≥

∧

x((α → H(A)(x)) → (α → A(x)))
≥

∧

x(H(A)(x) → A(x)) = TH(A). (by Lemma 2.10(10))

(2) For A =
∨

x∈X(A(x) ⊙⊤x), we have

TH(A) =
∧

y∈X(H(A)(y) → A(y))

=
∧

y∈X(H(
∨

x∈X(A(x)⊙⊤x))(y) → A(y))

=
∧

y∈X(
∨

x∈X(A(x)⊙H(⊤x)(y) → A(y))

=
∧

x,y∈X(H(⊤x)(y) → (A(x) → A(y))
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TH(A) =
∧

y∈X(
∨

x∈X(A(x)⊙H(⊤x)(y) → A(y))

=
∧

y∈X(
∨

x∈X(A(x)⊙H(⊤x)(y) →
∨

x∈X(A(x)⊙⊤x(y)))

≥
∧

x,y∈X(H(⊤x)(y) → ⊤x(y)) =
∧

x 6=y∈X H∗(⊤x)(y).

(3)

TH(H(⊤z)) =
∧

x,y∈X(H(⊤x)(y) → (H(⊤z)(x) → H(⊤z)(y))

=
∧

y∈X(
∨

x∈X(H(⊤x)(y)⊙H(⊤z)(x)) → H(⊤z)(y))

=
∧

y∈X(H(
∨

x∈X(H(⊤z)(x)⊙⊤x)(y) → H(⊤z)(y))

=
∧

y∈X((H(H(⊤z))(y) → H(⊤z)(y))

=
∧

y∈X(H(⊤z))(y) → H(⊤z)(y)) = ⊤

(4) By (2),

TH−1(A) =
∧

x,y∈X(H−1(⊤x)(y) → (A(x) → A(y))

=
∧

x,y∈X(H(⊤y)(x) → (A∗(y) → A∗(y))

= TH(A∗) = T∗
H(A).

(5)

TH(H−1∗(⊤x)) = TH−1(H−1(⊤x)) = ⊤,

TH−1(H∗(⊤x)) = TH(H(⊤x)) = ⊤.

Example 3.9. Let R ∈ LX×X be a fuzzy relation. By Example 2.2,
HR is a join preserving map with HR(A)(y) =

∨

x∈X(A(x) ⊙ R(x, y)). Define
THR

: LX → L as

THR
(A) =

∧

x∈X

(HR(A)(x) → A(x)) = eLX (HR(A), A).

From Theorem, we obtain the following results.

(1) THR
is an Alexandrov fuzzy topology on X.

(2) Since HR(⊤x)(y) = R(x, y), we have THR
(A) =

∧

x,y∈X(R(x, y) →
(A(x) → A(y))) such that THR

(A) ≥
∧

x 6=y∈X R∗(x, y).

(3) If R is a preorder, then HR is an upper approximation operator such
that THR

(Rx) = ⊤ for all x ∈ X.

(4) If R−1(x, y) = R(x, y) for all x, y ∈ X, then HR−1 is a join preserving
map. Define T∗

HR
(A) = THR

(A∗). Then T∗
HR

= TH
R−1

is an Alexandrov fuzzy
topology.
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(5) If R is a fuzzy preorder, then R−1 is a fuzzy preorder. Since H−1∗
R (⊤x) =

R∗
x and H∗

R(⊤x) = (Rx)∗, then HR and HR−1 are upper approximation opera-
tors such that

THR
(R∗

x) = TH
R−1

((Rx)∗) = ⊤.

Theorem 3.10. Let H,H−1 : LX → LX be join preserving maps. Then
we have the following properties.

(1) TH(A) ≤ TH−1(A → α) and TH−1(A) ≤ TH(A → α).

(2) TH(A) ≤ TH−1(A → α) ≤ TH−1((A → α) → β) and TH−1(A) =
TH(A∗).

Proof. (1)

A(x)⊙ (A(x) → A(y))⊙ (A(y) → α) ≤ α

iff (A(x) → A(y))⊙ (A(y) → α) ≤ A(x) → α

iff (A(x) → A(y)) ≤ (A(y) → α) → (A(x) → α)

TH(A) =
∧

x,y(H(⊤x)(y) → (A(x) → A(y))

≤
∧

x,y(H(⊤x)(y) → ((A(y) → α) → (A(x) → α))

≤
∧

x,y(H
−1(⊤y)(x) → ((A(y) → α) → (A(x) → α))

= TH−1(A → α).

(2) By (1), TH(A) ≤ (TH−1(A → α) ≤ TH((A → α) → β). Put α = β =
⊥. Then

TH(A) ≤ TH−1(A∗) ≤ TH(A∗∗) = TH(A).

Theorem 3.11. Let H,H−1 : LX → LX be join preserving maps.

(1) H(⊤x)(y) ≤
∧

A∈LX (TH(A) → (A(x) → A(y)). for all x, y ∈ LX .

(2) H(⊤x)(y) ≤
∧

A∈LX (TH−1(A) → (A(y) → A(x)). for all x, y ∈ LX .

(3) If H is an upper approximation operator, then, for all x, y ∈ LX ,

H(⊤x)(y) =
∧

A∈LX (TH(A) → (A(x) → A(y))
=

∧

A∈LX (TH−1(A) → (A(y) → A(x))
=

∧

z∈X(H(⊤z)(x) → H(⊤z)(y))
=

∧

z∈X(H∗(⊤z)(y) → H∗(⊤z)(x))
=

∧

z∈X(H−1(⊤z)(y) → H−1(⊤z)(x))
=

∧

z∈X(H−1∗(⊤z)(x) → H−1∗(⊤z)(y))
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Proof. (1) Since a ≤ (a → b) → b, we have

H(⊤x)(y) ≤
∧

A∈LX ((H(⊤x)(y) → (A(x) → A(y)) → (A(x) → A(y)))
≤

∧

A∈LX (
∧

s,t((H(⊤s)(t) → (A(s) → A(t))) → (A(x) → A(y)))

=
∧

A∈LX (TH(A) → (A(x) → A(y)))

(2)

H(⊤x)(y) = H−1(⊤y)(x) ≤
∧

A∈LX (TH−1(A) → (A(y) → A(x)))

(3) SinceTH(H(⊤x)) = TH−1(H−1(⊤x)) = TH(H−1∗(⊤x)) = TH−1(H∗(⊤x))
= ⊤,

H(⊤x)(y) ≤
∧

A∈LX (TH(A) → (A(x) → A(y)))
≤

∧

z∈X(TH(H(⊤z)) → (H(⊤z)(x) → H(⊤z)(y)))
=

∧

z∈X(H(⊤z)(x) → H(⊤z)(y)) ≤ ⊤x(x) → H(⊤x)(y) = H(⊤x)(y).
H(⊤x)(y) ≤

∧

A∈LX (TH(A) → (A(x) → A(y)))
≤

∧

z∈X(TH(H−1∗(⊤z)) → (H−1∗(⊤z)(x) → H−1∗(⊤z)(y)))
=

∧

z∈X(H−1(⊤z)(y) → H−1(⊤z)(x))
≤ ⊤y(y) → H−1(⊤y)(x) = H(⊤x)(y).

H(⊤x)(y) ≤
∧

A∈LX (TH−1(A) → (A(y) → A(x))
≤

∧

z∈X(TH−1(H∗(⊤z)) → (H∗(⊤z)(y) → H∗(⊤z)(x))
≤

∧

z∈X(H∗(⊤z)(y) → H∗(⊤z)(x))
≤ H∗(⊤x)(y) → H∗(⊤x)(x)) ≤ H(⊤x)(y)

H(⊤x)(y) ≤
∧

A∈LX (TH−1(A) → (A(y) → A(x))
≤

∧

z∈X(TH−1(H−1(⊤x)) → (H−1(⊤z)(y) → H−1(⊤z)(x))
≤

∧

z∈X(H−1(⊤z)(y) → H−1(⊤z)(x))
≤ H(⊤y)(y) → H(⊤x)(y)) ≤ H(⊤x)(y).

Example 3.12. Let R ∈ LX×X be a fuzzy relation and HR,HR−1 be join
preserving maps in Example 3.5.

(1) R(x, y) ≤
∧

A∈LX (THR
(A) → (A(x) → A(y)). for all x, y ∈ LX .

(2) R(x, y) ≤
∧

A∈LX (TH
R−1

(A) → (A(y) → A(x)). for all x, y ∈ LX .

(3) If R is a fuzzy preorder, then for all x, y ∈ LX ,

R(x, y) =
∧

A∈LX (THR
(A) → (A(x) → A(y))

=
∧

A∈LX (TH
R−1

(A) → (A(y) → A(x))

=
∧

z∈X(Rz(x) → Rz(y))
=

∧

z∈X((Rz)∗(y) → (Rz)∗(x))
=

∧

z∈X(Rz(y) → Rz(x))
=

∧

z∈X(R∗
z(x) → R∗

z(y)).
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Example 3.13. Let (L = [0, 1],⊙,→,∗ ) be a complete residuated lattice
with a strong negation which is defined by

x⊙ y = (x+ y − 1) ∨ 0, x → y = (1− x+ y) ∧ 1, x∗ = 1− x.

Let X = {x, y, z} and A,B ∈ LX as follows:

A(x) = 0.9, A(y) = 0.8, A(z) = 0.3, B(x) = 0.3, B(y) = 0.7, B(z) = 0.8

Let H,H−1 : LX → LX be a join preserving map such that, for all x, y ∈ X,
H(1x)(y) = H−1(1y)(x) as follows





H(1x)(x) = 0.5 H(1x)(y) = 0.2 H(1x)(z) = 1
H(1y)(x) = 0.8 H(1y)(y) = 0.6 H(1y)(z) = 0.9
H(1z)(x) = 1 H(1z)(y) = 0.5 H(1z)(z) = 0.7





(1) Since 1 =
∨

y∈X(H(1x)(y)⊙H(1y)(x) = H(H(1x))(x) 6= H(1x)(x) = 0.5
and H(1x)(x) = 0.5 6= 1 , then H is not an upper approximation operator.
Since H(A)(y) =

∨

x∈X(A(x)⊙ (H(1x)(y)), we have

H(A) = (0.6, 0.4, 0.9), H(B) = (0.8, 0.3, 0.6).

Moreover, by Theorem 3.8,

TH(A) = eLX (H(A), A) = 0.4, TH(B) = eLX (H(B), B) = 0.5.

H(⊤x) = (0.5, 0.2, 1), H(H(⊤x)) = (1, 0.5, 0.7)
H(⊤y) = (0.8, 0.6, 0.9), H(H(⊤y)) = (0.9, 0.4, 0.8)
H(⊤z) = (1, 0.5, 0.7), H(H(⊤x)) = (0.7, 0.2, 1)

TH(H(⊤x)) = eLX (H(H(⊤x)),H(⊤x)) = 0.5.

TH(H(⊤y)) = eLX (H(H(⊤y)),H(⊤y)) = 0.8.

TH(H(⊤z)) = eLX (H(H(⊤z)),H(⊤z)) = 0.7.

0.9 = H(⊤y)(z) 6=
∧

x∈X(TH(H(⊤x)) → (H(⊤x)(y) → H(⊤x)(z)))
= (0.5 → (0.2 → 1)) ∧ (0.8 → (0.6 → 0.9)) ∧ (0.7 → (0.5 → 0.7))
= 1

Hence, by Theorems 3.8 (3) and 3.11 (3), if H is not an upper approximation
operator, the results does not hold.

(2) We obtain H−1(1x)(y) = H(1y)(x) as follows





H−1(1x)(x) = 0.5 H−1(1x)(y) = 0.8 H−1(1x)(z) = 1
H−1(1y)(x) = 0.2 H−1(1y)(y) = 0.6 H−1(1y)(z) = 0.5
H−1(1z)(x) = 1 H−1(1z)(y) = 0.9 H−1(1z)(z) = 0.7




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Since 1 =
∨

y∈X(H−1(1x)(y)⊙H−1(1y)(x) = H−1(H−1(1x)(x) 6= H−1(1x)(x) =

0.5, then H−1 is not an upper approximation operator. Since H−1(A)(y) =
∨

x∈X(A(x)⊙ (H−1(1x)(y)), we have

H−1(A) = (0.4, 0.7, 0.9), H−1(B) = (0.8, 0.7, 0.5).

Moreover, by Theorem 3.8,

TH−1(A) = eLX (H−1(A), A) = 0.4, TH−1(B) = eLX (H−1(B), B) = 0.5.

For A∗ = (0.1, 0.2, 0.7), H−1(A∗) = (0.7, 0.6, 0.4), H(A∗) = (0.7, 0.2, 0.4) and

TH−1(A) = TH(A∗) = eLX (H(A∗), A∗) = 0.4,

TH(A) = TH−1(A∗) = eLX (H−1(A∗), A∗) = 0.4.

H(H−1∗(1x)) = (0, 0, 0.5) 6= H−1∗(1x) = (0.5, 0.2, 0)
H(H−1∗(1y)) = (0.5, 0, 0.8) 6= H−1∗(1y) = (0.8, 0.4, 0.5)
H(H−1∗(1z)) = (0.3, 0, 0) 6= H−1(1z) = (0, 0.1, 0.3)

TH(H−1∗(1x)) = eLX ((HH−1∗(1x)),H
−1∗(1x))) = 0.5

TH(H−1∗(1y)) = eLX (H(H−1∗(1y)),H
−1∗(1y))) = 0.7

TH(H−1∗(1z)) = eLX (H(H−1∗(1z)),H
−1∗(1z))) = 0.7.

0.9 = H(⊤y)(z) 6=
∧

x∈X(TH(H−1∗(1x)) → (H−1∗(1x)(y) → H−1∗(1x)(z)))
= (0.5 → (0.2 → 0)) ∧ (0.7 → (0.4 → 0.5)) ∧ (0.7 → (0.1 → 0.3))
= 1

Example 3.14. Let (L = [0, 1],⊙,→,∗ ) be a complete residuated lattice
as in Example 3.13. Let X = {x, y, z} and A,B ∈ LX as follows:

A(x) = 0.9, A(y) = 0.8, A(z) = 0.3, B(x) = 0.3, B(y) = 0.7, B(z) = 0.8

Define H(1x)(y) as follows




H(1x)(x) = 1 H(1x)(y) = 0.8 H(1x)(z) = 0.6
H(1y)(x) = 0.7 H(1y)(y) = 1 H(1y)(z) = 0.3
H(1z)(x) = 0.5 H(1z)(y) = 0.6 H(1z)(z) = 1





(1) Since
∨

y∈X(H(1x)(y)⊙H(1y)(z) = H(H(1x))(z) = H(1x)(z) and 1x ≤
H(1x) for all x, y ∈ X, then H is an upper approximation operator. Since
H(A)(y) =

∨

x∈X(A(x) ⊙ (H(1x)(y)), we have

H(A) = (0.9, 0.8, 0.5), H(B) = (0.4, 0.7, 0.8).
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Moreover, by Theorem 3.8,

TH(A) = eLX (H(A), A)) = 0.8, TH(B) = eLX (H(B), B)) = 0.9.

(2) We obtain H−1(1x)(y) = H(1y)(x) as follows





H−1(1x)(x) = 1 H−1(1x)(y) = 0.7 H−1(1x)(z) = 0.5
H−1(1y)(x) = 0.8 H−1(1y)(y) = 1 H−1(1y)(z) = 0.6
H−1(1z)(x) = 0.6 H−1(1z)(y) = 0.3 H−1(1z)(y) = 1





Since
∨

y∈X(H−1(1x)(y) ⊙H−1(1y)(z) = H−1(1x)(z) and 1x ≤ H−1(1x) for all

x, y ∈ X, then H−1 is an upper approximation operator. Since H−1(A)(y) =
∨

x∈X(A(x)⊙ (H−1(1x)(y)), we have

H−1(A) = (0.9, 0.8, 0.4), H−1(B) = (0.5, 0.7, 0.8).

Moreover, by Theorem 3.8,

TH−1(A) = eLX (H−1(A), A)) = 0.9, TH−1(B) = eLX (H−1(B), B)) = 0.8.

For A∗ = (0.1, 0.2, 0.7), H−1(A∗) = (0.3, 0.2, 0.7), H(A∗) = (0.2, 0.3, 0.7) and

TH−1(A) = TH(A∗) = eLX (H(A∗), A∗) = 0.9,

TH(A) = TH−1(A∗) = eLX (H−1(A∗), A∗) = 0.8.

H(H−1∗(1x)) = H−1∗(1x) = (0, 0.3, 0.5)
H(H−1∗(1y)) = H−1∗(1y) = (0.2, 0, 0.4)
H(H−1∗(1z)) = H−1(1z) = (0.4, 0.7, 0).

0.3 = H(⊤y)(z) =
∧

x∈X(TH(H−1∗(1x)) → (H−1∗(1x)(y) → H−1∗(1x)(z)))
= (1 → (0.3 → 0.5)) ∧ (1 → (0 → 0.4)) ∧ (1 → (0.7 → 0)).
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