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FUNCTION CHAINS FROM
UNIFORM SIGMA-1-1 WELL ORDERS
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Abstract: Appropriate restrictions may be placed on a ¥} well-order on Vj
where k is an inaccessible cardinal, so that it gives rise to a function chain
when k is a Mahlo cardinal. Set chains may be defined for all second order
formulas. Postulating that the sets in the resulting set chain are stationary
yields a powerful new axiom.
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1. Introduction

From the results of [5] it is clearly of interest to devise ordinal notation systems
which permit the definition of function chains. The system used in [5] is based
on the infinitary Veblen function, which can be defined over any cardinal in a
highly uniform manner.

An early attempt in [2] to construct set chains from a class of constructive
ordinals was only partly successful. Here the notion of a “uniform” :1 order is
defined. The defining formula is required to define an order uniformly in any
inaccessible cardinal. It follows that such gives rise to a function chain.
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Before giving the most general class of orders, two more specialized classes
are given. These serve to illustrate the nature of these orders, and raises a
variety of questions of interest.

Some notation to be used in the paper is as follows: Ord denotes the class
of ordinals, Lim the limit ordinals, Card the cardinals, and Inac the (strongly)
inaccessible cardinals. For x € Card let Lim, denote Lim N k. For x € Inac
let Card, denote Card N k, and let Inac, denote Inac N k. For a well-order X,
Ot(X) denotes its order type. Suppose x € Card and f¢ for £ < & is a sequence
of functions from some domain D C k to Ord; let dsup,, f¢ be the function f
where f(7v) = supe,, fe(7).

A binary relation < on some set is said to be a WPS (well-preorder on a
subset) if it satisfies the axioms

Tl. AXKBAB=(C=AXC

T2. AKB=A=<A

T3. AXB=B=<B

T4. AKANB=<B=(A<BVB=<A)

F. For all functions f : w — Fld(=X) there is an n such that f(n) < f(n+1)
Note that A € Fld(=<) iff A < A. A < Bis an abbreviation for A < BA-B < A.
Write A = B for A < BA B = A, it follows from the axioms that this is a
congruence relation for < and <, and the quotient order is a well-order on the
equivalence classes.

A well-order on a subset is a WPS, where = is discrete, that is, A = B =
A= B.

For a WPS < and P € Fld(X)let AXp Bif A< PAB<PANA=XB. It
is readily seen that <p is a WPS. Note that <p is defined even if P ¢ Fld(=),
and equals .

Lemma 1. Suppose < is a WPS.

If P < @ then Ot(=<p) < Ot(=g).

IfP < Q then Ot(jp) < Ot(jQ)

If P<@Q and P < R= Q < R then Ot(=qg) = Ot(=p) + 1.

Suppose n < k is a limit ordinal and P¢ for § < 7 is a sequence with Pg, <
P, for & < &. If Pe < P for all §¢ < mand ¥ < n(P: < R) = P X R
then Ot(=2p) = sup;,, Ot(=Zp,).

o T

Proof. These are basic facts of order theory. Let =<’ denote the quotient
well order of <. With obvious notation, P < @ iff </, is an initial segment of
=g ff Ot(=p) < Ot(=2g). All parts of the lemma follow readily. O
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2. Function Chains

Let x be any regular uncountable cardinal. The club filter is defined more
generally, but is better behaved for such . Functions from D to s will be
considered, where D is a subset of x, namely one of k, Lim,, Card,, or Inac,.
In the case of Card, s will be required to be inaccessible, and in the case of
Inac,, x will be required to be Mahlo,

For f,g: D kand S C D say that f <g g if f(a) < g(a) for a« € S. The
notions f <g g and f =g g are defined similarly to f <g g. As in definition
24.4 of [8] if F is a filter of subsets of D say that f <r g if f <g g for some
S € F. The notions f <r g and f =F g are defined similarly to f <r g.

Let C be the club filter on k. For D C klet Cp = {CND : C € C}. Write Cy,
Co, and Cy for Cp when D is Lim,, Card,, and Inac, respectively. The classic
Galvin-Hajnal order is the order <¢ on &"; it is transitive and well-founded. By
a function chain is meant a chain in this order, or more generally in one of the
orders <c,,. In the case of Cr,, no further restriction need be placed on x, and
<c, is essentially the same as <¢, in that f <¢ g iff f | Lim, <¢, ¢ | Lim,. In
the case of Cc, k € Inac is required, so that Card,, is club, and <¢, is essentially
the same as <¢. In the case of C;, kK Mahlo is required, so that C; is a filter. In
this case it is not known to the author whether the chain lengths are the same
for <¢ and <¢,. As will be seen, chains in <¢, are of interest.

Canonical functions are a well-known function chain of length x*. One char-
acterization may be found in lemma 24.5 of [8], and a second in exercise 27.6.
A characterization using schemes is given in [3]. Here, a fourth characterization
from [1] will be given.

Suppose k is a regular uncountable cardinal, A C k X k is a binary relation,
and 0 € Lim,. Let A | 6 denote AN 6@ x 0. Then Vy is closed under ordered
pairs, and A [ 8 = ANVy. If A is a total order on a subset then A N Vjp is; and
if A is a well-order on a subset then AN Vj is.

Lemma 2. Suppose k is a regular uncountable cardinal. Say that a
predicate which holds in V, reflects in a club if it holds in Vy for a club of
ordinals 0 < k. The following reflect in a club.

A is a well order on a subset.

Ot(A) < Ot(B).

< Ot(B).

Ot(B) + 1.

= supg.,, Ot(A¢), where n < x and Ot(Ag) is increasing.
= supg Ot(Ag), where Ot(Ag) is increasing.

- D P~O oo

Ot(A)
Ot(A)
Ot(A)
0t(4)
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Proof. This follows readily by lemma 1.3 of [1]. For convenience a detailed
proof is given. Part a has already been observed.

Now, if F': k +— K then {7y : F[y] C v} is a club subset (closure follows by
elementary set theory. Unboundedness follows by letting vo = v+ 1, Y41 =
yUsup F[y], and 4/ = sup,, 7). Part b follows. As a corollary, if Ot(A) = Ot(B)
then fA ~c fB-

Given 6 € FId(A) let A5 denote {(5,v) € A: (8,9) € A and (v,0) € A}.
For part c, it suffices to observe that if § € F1d(A) then Ot(A<s [ ) < Ot(A | 0)
provided § < 6. For part d, if § is the element of Fld(A) which is maximal in
the order, then Ot(A.s [ #) = Ot(A | §) + 1 provided 0 < 6.

For part e, let ¢ be such that Ot(A<s,) = Ot(Ag), and suppose Ot(A—s, [
§) = Ot(Ae | 0) for a club C¢ of 0. Let C = N¢eyCe. Then Ot(A [ 6) =
SUPe<, Ot(A<s, | 0) = supee, Ot(A¢ | 0) for 6 € C. Part f is similar, except
C = A¢cCe and Ot(A | 0) = supeg Ot(A<s, | 0) = supe9 Ot(A¢ [ 0) for
0eC. O

Each well-order A on k gives rise to a function f4 : Lim, — k, where
fa@) =0Ot(ANVy).

Corollary 3. a. If Ot(A) < Ot(B) then fa =¢, fB.

b. If Ot(A) < Ot(B) then fa <c, fB.

If Ot(A) = Ot(B) + 1 then fa =¢, fp+ 1.

d. if Ot(A) = sup,., Ot(A¢) where n < r and Ot(A¢) is increasing then
fa=c, supeey, f-

e. if Ot(A) = supe.,, Ot(A¢) where Ot(A¢) is increasing then

o

fa=c, dsup§<,.€f§.
Proof. This is immediate by lemma 2. O

By well-known facts, f4 is a canonical function of index Ot(A). The set
of these, ordered by <c,, has chains of length . In previous papers, the
author defined various function chains in <¢,; here more care will be exercised
in specifying the domain. It is worth observing that in the definition of fx for
a scheme ¥ given in [5], the domain may be taken as x.

The obvious “next” function after the f4 is A = A\* for A € Card. This is a
function into k only if x is a limit cardinal. Thus, in considering function chain
of length greater than k%, x € Inac will be assumed. As already observed,
functions need only be defined on the domain Card,. For example, A — AT is
simple to define on Card,.
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There are 2% function chains, so any function chain has length less than
(2%)*. Since (27)" is regular, the length of a function chain is in fact bounded
below (2%)7.

3. A Generalized Iterated Hull Ordinal

Countable ordinals defined by an iterated hull construction have received con-
siderable attention since the 1970’s due to their usefulness in proof theory (see
[11] for example). Here, a construction in [10] will be generalized.

Let 6 be a cardinal. As in [5], for k& > 1 let Cy(ng,0%,...,m,01) denote a
“Cantor normal form (CNF)” function, and ¢ (¢, &1, 71, -+, &k, 7,) an “infini-
tary Veblen (IV)” function. In [5] a definition is given of when the arguments of
a function application are proper, and of the value, which is 0 if the arguments
are not proper. A function application is said to be in normal form if the value
is greater than any of the arguments.

Let E denote the “e-numbers” (Ran(¢,1) in the notation of [5]). It is well-
known that if o ¢ E then there is a unique normal form function application
with @« = Cy(nk,0k,...,m1,01). If @ € E then the closure of a under Cj
functions equals a, and if a ¢ E then the closure equals the next largest element
of E.

Let ¢4 denote the “diagonal function” of the infinitary Veblen function
(denoted ) in [5]). Let L denote the fixed points of ¢4, and write A, for the a-
th element of L. It follows by lemma 6 of [5] that if « € E and o ¢ L then there
is a unique normal form function application with o = ¢ (¢, &1, 71, - -5 &y Th)-
If a € L then the closure of a under ¢y, and C}, functions equals o, and if a ¢ L
then the closure equals the next largest element of L, which will be denoted
o,

For notational convenience let €2 denote 8. Sets B, and a function v are
defined as follows. B, is the closure of § U {Q2} under the functions Cf, ¢, and
Y [ o Pla) =min{ : £ ¢ B,}. Let T be the set of terms, whose leaves are
ordinals o < @ or €2, and whose interior nodes are functions C%, ¢, or 1». Then
B, is those ordinals given by such terms, when ¢ is interpreted as ¥ | a.

The definition of B, given in [10] requires only closure under the binary
Veblen function. Here, closure under the ¢y is assumed, so that it is easy to
see that the ordinal being defined is greater than Ag.

Lemma 4. a. |By| =0, and ¢(a) < Q.
b. If &« < 3 then B, C Bg and ¥(a) < 9(f).
c. BoNQ=1y(a).
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d. ¢(a) € L.
e. If a € Lim then B, = Ug<qBg and ¥(a) = supg, ().

Proof. For part a, |T'| = 6 by standard arguments, and () < Q follows
because (2 is a regular cardinal. Part b is straightforward. For part ¢, B, N C
() follows by the definition and part a. If 5 < ¥ («), it follows by induction
on terms that 8 € B,. This is clear if the term is a single node. If the root is
a Cp or ¢ function then the value is either 0 or no less than the arguments,
which are therefore in B, inductively. If the root is 1, say S = 1(v) where
v € By Na, then by part b ¥(y) < ¢(«), that is 8 < ¥(a); and since 5 € By,
B # ¥(a). Part d follows because 1)(«) is closed under the Cy, and ¢y, by part c.
For part e, Ug<oBg € B, by part b. If v € B,, it follows by induction on terms
that v € Bg for some 3 < . This is clear if the term is a single node. If the
root is a C} function then inductively the arguments are in some Bg, whence
the value is. If the root is 9, say v = 1(d) where § € B, N «, then using the
induction hypothesis 3 can be chosen so that § € Bg N 3, and it follows that
v € Bg. supg, ¥(B) < (a) by part b. If v < ¥(a) then by part ¢ v € B, N,
whence by what has already been proved v € Bg N for some 3 < «, whence
again by part ¢ v < ¥(p). O

Lemma 5. Let A’(0) be the first fixed point of o — A,.
If o« ¢ B, then Byt1 = B, and Y(a + 1) = ().

If @ € By then ¥(a + 1) = (a)™.

If £ < N'(0) then (&) = Ae.

If A'(0) < & < Q then (&) = A(0).

For any a, B, C Boa and 1(a) < ¢(Q4).

R T

Proof. These correspond to lemma 23.9.ii, lemma 23.9.i, lemma 23.10.i,
lemma 23.10.ii, and theorem 23.12 of [10] respectively. The proofs given there
may be readily adapted. The adaptations of the proofs include replacing SC
by L, etc. O

(M) is thus the ordinal which has been constructed. As already men-
tioned, it is greater that Ay (in fact the ordinal A’(0) defined above). When
necessary to specify the base #, the notation 1/)((23) will be used.

A function application a = () is said to be in normal form if 5 € Bg.
The notation o = ¥(8) will be used to denote that this is the case.

Lemma 6. a. Suppose o; =n Y(f;) for i = 1,2. Then oy = ag iff
p1 = B2, and oy < ag iff B < fa.
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b. Given a < QM there is a € B, such that 8 > «. Let ay be the least
such; then ay is the unique ordinal such that {ay) =y ¥(a).
c. Given o € LN (M) there is a unique ordinal 3 € Boa such that a =y

¥(B).

Proof. The parts correspond respectively to lemma 23.14, 23.15, and 23.16
of [10]. The proofs are readily adapted. O

Say that a term is in normal form if every function application is.

Theorem 7. For every o € Bqa there is a unique normal form term whose
value is a.

Proof. Say that a term is in pre-normal form if all applications of C} or ¢y
are in normal form. Given any term, improper function applications may be
replaced by 0, and then non-normal applications of C}, or ¢ replaced by a son
in a bottom-up manner. Thus, only pre-normal form terms need be considered.
It will be shown by induction on ~ that any pre-normal form term for a value
in Bs may be transformed to a normal form term. The basis 6 = 0 is clear, and
the claim for § € Lim follows by lemma 4.e. Thus, suppose v =y~ + 1.

Suppose a € B, — B, and suppose ¢ is a pre-normal form term for a.
Let n be a node of ¢ which is not normal, which is closest to the root among
such. If oy, is the value at n then «,, = ¥ () for some 3. There is an ordinal /3
such that {£ : ¥(§) = ¥(77)} equals the closed interval [Bo,7~]. If < fp then
oy € B, so inductively there is a normal form term w for a,, and the subtree
of t rooted at n may be replaced by u. If € [By,7~] then there is a normal
form term w for v=; letting m be the son of n, the subtree of ¢ rooted at m
may be replaced by u. The resulting modified version of ¢ has fewer non-normal
nodes, and the step may be repeated until a normal form term is obtained. [

Number the cases of the nodes of a term t as follows:
1. an element of 6

2. O

3. Cr(m, o1,y Ny O)

4. oG €Ty ks Th)

5. ¢(B)
Let A(t) denote the list of values of the arguments of type 4 nodes. Write

A(t) < vif § <~ for all § in the list.
Lemma 8. Supposet is a term for a.
a. o Bﬂ iﬁA(t) < B.
b. =N ¥(a) iff A(t) < a.



668 M. Dowd

Proof. Both parts follow readily from the definitions. O

The results of a comparison between normal form terms may be broken in
to the following cases, depending on the cases of the root nodes:

1,1: use an oracle

1,2: less than

2,2: equal

1,3: less than

2,3: compare €) to n;

3,3: use lexicographic order

1,4: less than

2,4: compare ) to all arguments (greater than if all greater than, else less
than)

3,4: compare 77 to the second term

4,4: use reverse lexicographic order

1,5: less than

2,5: greater than

3,5: compare 77 to the second term

4.5: compare all arguments to the second term (less than if all less than, else
greater than)

5,5: compare the two ’s

Using the above recursion, facts stated in the proof of lemma 10 of [5], and
lemma 8 an algorithm for determining if two terms are in normal form and
comparing them is obtained. It is readily seen that it runs in polynomial time,
where oracle queries require 1 time unit.

Say that a tree with interior nodes labeled with Cy, ¢y, and ¢ (with correct
valencies) is a pre-term. If each leaf is labeled with an element of 6 or Q, call
the result an o-term (over ) (called simply a term above). If each leaf is labeled
with a well-order on a subset of k or €2, call the result a w-term (over k). A
w-term over xk may be converted to an o-term over kT by replacing each well-
order by its length. Each o-term (and thus each w-term) represents an ordinal,
namely that given by the recursive definition of the value of a term.

Given an o-term or w-term « let o denote its value. Given a cardinal 6, the
o-terms over ¢ which are in normal form and whose value is less than 2, form
a univalent system of notation for the ordinals less than @Z)(Qé‘). The algorithm
given above defines a binary relation < on the terms, and a < g iff a < 5. In
particular, < is a well-order on a subset.

Given an inaccessible cardinal k, a w-term « over s yields an o-term over
k*. The order < may be defined on the w-terms in an obvious manner, and is a
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WPS. If the value is less than ) then o determines a function f, : Card,, — &,
namely where fq(6) is the value of the term obtained by replacing each leaf
well-order A by AN Vy. By lemma 2, if o < 3 then fo <c¢, fg. In particular,
there are chains of length 1(Q%,) in the order <¢ over k.

4. Ordinal Comparison Oracle Machines

A comparison oracle machine is a Turing machine M with four additional states.
M enters state Q to make a comparison. In the next step, the state is L(ess
than), E(qual), or G(reater than). For § € Card M operates over € on pairs
ar = (c1, k1,71, k) and ag = (€2, ko, Vi 41, -« s Vi +ks ), Where ¢; is an
integer code for each i and ~y; € 6 for each j. M enters state Q with the head
to the left of a string for (j1,j2) where 1 < j; < ky + ko; the result of the query
is the result of the comparison of ~; to vj,. M halts with the value of the
predicate a; < awo.

Say that M runs properly at 6 if for any input pair o, aw, all queries are
well-formed and the computation halts. Further the predicate < is a well-order
on a subset.

Theorem 9. If a comparison oracle machine M runs properly at w then
it runs properly at any cardinal 6.

Proof. Given 6, for given ci,cs the possible computations of M form a
tree, with ternary nodes where queries are made. The branch through the tree
depends only on the results of the queries. Integer values for the 7; can be
found, so that the same branch is taken. It follows that if queries are well-
formed and the computation always halts over w then this is true over any 6.
For axiom T1, there are three inputs a, s, g involved; integer values may
be chosen for all the + values, so that the behavior is mimicked on all three
input pairs. Axioms T2-T5 follow similarly. Finally, given a descending chain
«;, again integer values for all the v; involved may be chosen, to mimic the
behavior. O

A machine which runs properly at all § € Card will be said to be in the class
Uypr. Given a Uy machine M, for each 6 € Card a binary relation <y is induced,
on inputs of the form o = (¢, k, G1,. .., Gj) where G; is a well-order on a subset
of 0; this relation is a WPS. Suppose « € Inac. For « an input over k, a value
a may be associated with o, namely, Ot(=4). A function f, : Card, — k may
also be associated, where fq () equals Ot((=g)anv,)-
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Theorem 10. Suppose M is a Up; machine and k € Inac. If a <,; 3 then
fa <cc fa-

Proof. Using lemma 2 and the fact that @ < 3 is forced by finitely many
queries, it follows that {6 : a« NVp <9 BN Vpy is in the club filter. The theorem
follows using lemma 1. O

In showing that an order is in Uy, an informal algorithm may be given.
This has been done for the terms of section 3, showing that (Q%) is a Uy,
ordinal.

5. 2% Formulas

Let Lo be the language of second order set theory. Usually, Lo has a single sort,
and a definable predicate which specifies which classes are sets. An alternative,
which results in various simplifications, and will be adopted here, is to have two
sorts, sets and classes. This raises its own complications, but they are readily
handled as follows. There are two predicates, x € y, and x € X. There is an
“equi-extensional” predicate x = X which satisfies appropriate axioms.

An Ly, formula involving only first order quantifiers will be said to be A}.
A A} formula preceded by a block of existential (universal) class quantifiers
will be said to be %1 (I1}).

For 6 € Lim, Vj is a structure for Ly, with second order variables ranging
over subsets of V. Suppose x € Inac. Now, a class is the same thing as an
additional predicate symbol; in particular if X C V, and 6 € Lim, then in the
structure Vy, X is interpreted as X N Vj.

Theorem 11. Suppose k € Inac and X1,..., X C V, are class param-
eters. Then there is a club subset C C Lim, such that for § € C, Vy is an
elementary substructure of V., in the language with symbols for the unary
predicates X1, ..., Xk.

Proof. Unboundedness follows by a variant of the downward Lowenheim-
Skolem theorem (see also Theorem 9.1.3 of [6]). Closedness is a well-known fact
about elementary substructures. O

Corollary 12. If EIqu(V_V,X) is a ¥1 sentence with class parameters,
which holds in V., then it holds in Vj for a club of limit ordinals below k.

Proof. Instantiate the W; and apply the theorem to W, X. U
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6. Us1 Orders

Suppose £ € Inac, and ¢(X,Y, P) and ¢(X,Y, P) are X! formulas with class
parameters P; C V... (¢,v) is said to be a Us;1 formula pair at « if ¢ defines a
WPS <in V,, and a WPS <, in V), for A € Inac,{; and 1) defines < in V, and
<y in V) for A € Inac,. =< will be said to be a L{Z% order if it is the relation
defined by the formula ¢ if a L{Z} formula pair.

Alternatively, one could require ¢ to define a WPS in Vj for any 6 € Card.
This stronger requirement would yield a function chain in <¢,. It is a question
of interest whether the chains in <¢ are as long as those in <¢,.

Various other specializations can be considered, such as requiring ¢ to be
uniformly Al, requiring ¢ to define a WPS in Vj, for all x € Inac and all values
of P, or requiring this last fact to be provable in NBG (see [9] for NBG, which
is readily adapted to Ly). Whether such restrictions result in smaller ordinals
is a question of interest. Further specializations will be described below.

Given r € Inac and a Usy order =, let a be an element of FId(=). As
in section 4, given «, o may be used to denote Ot(=4). The function fq :
Inac, + & is that where fo(X) = Ot((Z\)ary)- fa(A) < (2M)F, which is less
than k since k is inaccessible. It is a question of interest whether this bound
can be improved. Note that L{Z% orders and f, are defined for any inaccessible
cardinal; however <¢, is defined only if x is Mahlo.

Theorem 13. Suppose = is a UE% order over k where k is a Mahlo
cardinal.

a. If a X B then fo <¢, f3.

b. If a < B then fo <¢, f3.

Proof. Let P be the parameters in the formula ¢ definition of <. Let C be
a club as in corollary 12 for the parameters o, 3, 13, so that C C {0 :anVy =<y
B N Vy. Part a follows using lemma 1. Part b follows similarly, using 1 rather
than ¢. U

By part b, for Mahlo cardinals, if there is a Z/IE% order of length « then there
is a chain of length a in the order <¢,.

7. Set Chains for Us: Orders

As in [3], for k € Inac and X,Y C &k say that X C; YV if X — Y is thin. For
X C Inacy let H(X) = {A € X: X N\ is a stationary subset of A\}. This
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operation is uninteresting unless x is Mahlo, but for technical reasons it is
defined for xk € Inac. For X, Y stationary subsets of Inac, say that X <p Y if
Y C; H(X). It is well-known that this relation is transitive and well-founded;
let pr denote the rank function. Note that <p is empty unless s is Mahlo.

Suppose = is a WPS on k. For a € Fld(=X) and X C Inac,, say that A €
H*(X) iff A € X and H?(X N \) is a stationary subset of A for all v € Fld(=))
where 7 < fo (), or equivalently v <\ aN V).

Theorem 14. If § < o then for any X C Inac,, H?(X) D; H*(X).

Proof. The proof is by induction on k. For the basis, x is the smallest
inaccessible cardinal, X is always empty, and the claim is trivial. For arbitrary
K, there is a thin set T' such that if A € Inac,, and A ¢ T then fg(\) < fa(A).
For such ), if H3(X N \) is stationary for 3 < fu()), then by the induction
hypothesis HP (X N \) is stationary for 8 < fg(\). O

Lemma 15. Suppose a € Fld(=<), X C Inac, and A\ € Inac,. Then
HY (X NA) = H*(X)N A

Proof. Suppose p1 € X N A. Then p € H*A(X N A) iff HY(X N p) is
stationary for v <, aNVyNV, iff HY(X N u) is stationary for v <, a NNV,
iff p e HY(X). O

Theorem 16. If § < a then for any X C Inac,, H(H?(X)) D; H¥*(X).

Proof. By theorem 14, except for a thin set of A, if A € H*(X) then \ €
Hﬁ(X). Also, except for a thin set of \, BN Vy, < anN V), and for such A,
HPA(X N A) is stationary. By lemma 15, H3(X) N \ is stationary. O

8. Enforceability

If ¢ is an Ly formula and s is a set let ¢(*) be ¢, with first (second) order bound
variables constrained to range over elements (subsets) of s.

Lemma 17. Fix a Godel numbering "¢ of the Ly formulas ¢ in the free
second order variables P.
a. There is a A} formula Sat,(s, f) in the free second order variables P such
that Fypg ¢°) < Saty(s,"¢7).
b. Write ¥ for some of the free variables. For k € Inac, A\ € Inac,, and
r; C Vi, v, 0(T) iff vy, Sats(V," 97, T).
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Proof. Part a follows by standard methods; an outline will be given. Let
u be the set of sentences of Lo expanded with members (subsets) of s, to
instantiate first (second) order variables. Let ¢ : u :— {0, 1} be the assignment
of truth values. There is a A} formula TA(s,t) stating that ¢ is the truth
assignment. Then Sats(s, f) iff 3¢(TA(s,t) At(f) = 1). Part b follows, since

s ¢ iff ¢ iff =y, 91, O

Suppose for the rest of the section that x € Inac and < is a UE% order over

k, defined by the formula pair (¢,), with parameters P.

Lemma 18. There is a A} formula defining the function A + S\ with
domain Inac,, where Sy = {(b,z,y) : b € FId(=X)) A x C Inacy A y C Inacy A

y=H(x)}.

Proof. The function may be defined by recursion on A. The clause b €
Fld(=)) may be expressed as Sats(Vy, ¢, b, b, ]3) The clause y = H%(z) may
be expressed as Vo < AN € y < p € x A VeVy' (Sats(Vy,, "7, ¢,bNV,) A,z N
Vi, y') € S = “y' is stationary”)). O

Theorem 19. There is aIl} formula ®<(A) which holds in V,, iff H*(Inac)
is stationary.

Proof. The formula may be stated as VC, X, Y, Z( A € Fld(=<) A “C is club”
AX=TInacANY =HYX)AZ=YNC = Z#0). The clause A € Fld(=)
is A < A, which is 1. The clause Y = H*(X) may be expressed as VA(A € Y
S N e X AVVY( Sats(V, e, ANVY) A (e, X NV, y) € S\ = “Y is
stationary” )). This is A}, as are the remaining clauses. O

Let ®Z denote the formula VB(B < A = ®<(B).
Theorem 20. Ifk is weakly compact then =y, ®<(A) for any A € FId(=).

Proof. This may be proved by induction along < on A. Inductively, =y, ®2
may be assumed. Since  is weakly compact, {\ € Inac, :=v, <I>; is stationary.

It follows that for a stationary set of A, H’(Inac N \) is stationary for all b <
ANVy; and so HA(X) is stationary. O
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9. New Axioms

Suppose ¢(X,Y, ﬁ) is a formula of Ls. The statement that ¢ defines a WPS,
and does so in Vi for any k € Inac, is a formula of Lo, with free variables for
the parameters. Letting < denote the order, < will be said to be a a1 order if
the formula holds in V', and a UA})O order in Vj if it holds in Vj;, where p; C V.

Let A< be the Ly statement, “if <isa WPS then VAP<(A)”. A justification
of adopting A< as an axiom is as follows. Suppose the universe is sufficiently
large. Inductively, assume ®_ holds in V), for a stationary class of A. Since the
universe is sufficiently large, there is a x € Inac such that ¢ holds in V) for a
stationary set A\ < k. In fact, there is a stationary class of such . Thus, there
is a stationary class of x such that ®< holds in V.

This argument is fairly strong as it is. It should be investigated whether it
can be strengthened by giving more details. Further discussion is omitted here.

There is an axiom scheme whose formulas are all the formulas A<. This
axiom scheme states that Card is {p1 -Mahlo, and « € Inac is said to be Ua1 -
Mahlo if the axiom scheme holds in V.

Restricting < to be L{Z% yields the notion of a lel -Mahlo cardinal. As seen
in section 8 a weakly compact cardinal is UZI Mahlo. Tt seems likely that the
Mahlo-ness of a weakly compact cardinal cannot be raised much higher than
this. It is a question of considerable interest whether the existence of Ua1 -
Mahlo cardinals implies the existence of weakly compact cardinals. The former
axiom has been justified, so if this is so then the existence of weakly compact
cardinals would be justified.

10. Los and OSg

In this and the following few sections a discussion will be given of a class of
orders intermediate between Uy and Usy orders. This topic was considered in
[2], but the discussion there was incomplete. It is of interest since it provides a
further example, and the uniformity requirement holds automatically,

Let Log be a language with two sorts, one for ordinals (which will be de-
noted «, etc.), and one for sequences of ordinals whose length is an ordinal
(which will be denoted s, etc.). The language includes the functions and rela-
tions 0, 1, « + B, and a < . In addition there are the functions & = Dom(s),
B = Eval(s, a), and t = Rstr(s, a, 8).

We define a structure OSy for the language Log for any cardinal . The
ordinals are interpreted as 6, and the sequences as #<?. 0, 1, 4+, < are interpreted
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as usual. The additional functions are interpreted as follows.

e Dom : #<% i 0. Dom(s) is the domain of s.

e Eval : 0<% x 0 — 0. Eval(s,a) = s(a).

e Rstr: 0<9 x 0 x 6 — 0<%, Rstr(s,, 3) equals s, restricted to {7y : a <

v <a+ )

We may write |s| for Dom(s) and s(«) for Eval(s, «).

Bounded quantifiers in Log are those of the form Vv < 8 or 3v < 8 where
[ is a term. Ag, X1, and 1I; formulas are defined as usual, where free variables
and unbounded quantifiers may be of either sort. Note that < is definable; but
it is convenient to have it in the language for the specification of the bounded
quantifiers.

In the notation of [12], let Ry(51, f2, 81, 35) denote the Godel well order on
ordered pairs, and let Jy denote the Godel pairing function.

Lemma 21. a. Jo is Aq.

b. The ¥, predicates are closed under bounded quantification.

c. IfG: 0<% — 0 is aX; function then there is a ¥, function F : 6 — 6 such
that F(a) = G(F | ).

Proof. For part a, let P;(s,t) be the predicate which is true iff |s| = |¢| and
the sequence of ordered pairs (s(v),t(7)) for v < |s| is the enumeration of an
initial segment of Ry. It is readily verified that Py is Ag; and J(5,v) = 0 iff
ds,t(|s| = |t| = + 1 A s(0) = BAt(6) = ). For part b, first, Vy < SISR(y,0)
can be rewritten as 3t(|t| = B AVy < BR(7,t(v))). Second, let P;(t,u) hold
iff |t| = |u| and for all v < [t], £() is the sum of the u(J) for 6 < ~; Py is
Ay, and Vv < pIsR(v,s) can be rewritten as Jt,u,v(|t| = B A Pi(t,u) AVy <
BR(7y,Rstr(v,t(y),u(v)))), Part b now follows. For part ¢, the predicate F'(5) =
v can be written as Js(|s| = B+ 1AV0 < S+ 1(s(d) = G(Rstr(s,0,9))) As(5) =
7)- O

It is clear from the foregoing that OSy is a suitable setting for recursion
theory. For further evidence, it is shown in [2] that a relation is X1 over L, iff
it is X1 over OSy N L.

The case § = T will be of special interest. In this case, by Hausdorff’s
formula (see [8]) the number of sequences equals 27.

11. An Axiom System

An axiom system for the theory of OSy can be given. An axiom system for
ordinal addition is of independent interest, and will be given first.
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Axioms for 0,1, +:

The axioms of equality (for the ordinal sort)
a+0=a«a
O+a=a

at+(B+v)=(a+p8)+y
atf=aty=0=19
a+p8=0=p6=0
—3(f=a+6) =30 #0ANa=F+9)
cea+f=1=(a=0VvVE=0)
Axiom defining <:
e a< fiff (I #AO0NL=a+0)
Theorems concerning < provable from the preceding:
(o < )
a<PBAB<y=>a<y
a+f<at+ye <y
—(a < 0)
Exactly one of a < 8, a = 5, or 8 < « holds
-~ < f<a+1)
a<pPH+lea<pfVa=0
a<pPea+l<pfVa+l=g0
s a+l<f+lea<p
Axiom defining <:
ea<fiffa<fra=p
Theorems concerning < provable from the preceding;:

a< o
a<BAB<y=a<y
a<pBAf<a=a=p
a<fpfVp<a
atf<at+tye <y
0<a«
a<pP+lesa<lp
e a<fea+1<p
Axiom of continuity of +:
e V3 < Bla+pf <y)=a+8<7y
Induction axiom (for formulas involving only the ordinal sort)
o Va(Vy < ag, /o = ¢) = ¢.
The preceding system of axioms will be referred to as Ag. It is a question
of interest whether there are any redundancies, but this topic is omitted here.
It is a straightforward observation that Pressburger arithmetic is interpretable
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in Ap. To obtain an axiom system Agpg for Log the equality and induction
axioms allow variables of either sort; and the following axioms are added. to
Ao.

e 7 > Dom(s) = Eval(s,v) =0

e Dom(s) = Dom(t) A Vy(Eval(s,v) = Eval(t,y)) = s = t.

o t =Rstr(s,o, ) NO <y Aa+v < = Eval(t,y) = Eval(s,a + 7).

e (Comprehension) If F' is an ordinal values function whose domain is an
ordinal « then there is a sequence s such that Dom(s) = « and Vy <
a(F(7) = Eval(s, 7).

Aps is interpretable in NBG, without power set or replacement.

12. Interpreting OS, + in Classes

Interpreting ordinals and sequences as classes, L(jg may be interpreted in Lo
by means of the predicates below. Unless otherwise indicated these predicates
are A(l). m; denotes a projection function.

Iorq(A). A is a class of pairs of ordinals and as a binary relation A is
transitive, satisfies trichotomy on its field, and —-3f(f : w +— FIld(A4) and
Vn(A(f(n+1), f(n)))).

Iseq(S). S ={0} x SoU{1} xSy where Sy satisfies Io,q and S; is a class of
triples (¢, o, f) and 71[S;] = F1d(Sp) and V( € F1d(Sy) Si¢ satisfies Io,q, where
SlC = {<a7/8> : <§7a7/8> € Sl}

Iz¢r0(A). A is the empty relation.

Ione(A). A consists of a single pair (0, 1).

Ip1s(Cy A, B). If a = B+ n where 8 is a limit ordinal and n is an integer,
let oY) = B4 2n +i for i = 0,1. Using obvious notation, F1d(C) = Fld(A)©® U
Fld(B)™W and (o, W) e Ciffi<jori=j=0and (a,8) € Aori=j=1
and (a, 5) € B.

I-(A,B). A %! formula for A < B is 3F(F : Fld(A) — F1d(B) and F is
monotone). A ¥i formula for A < B adds the conjunct “F is not surjective”
to the matrix. ~(B < A) is a [T} formula for A < B. Thus, I-(A, B) is a A}
predicate.

I_, ,(A,B). A formula for this is A < BA B < A. By the preceding
paragraph, I__ (A, B) is a Al predicate.

I—g,,(S,T). This holds iff there is an order isomorphisms Fp : So = T such
that Sic = T pyc). The I} form is Sy = Ty AVFy.... Thus, I_,_(S,T) is a
Al predicate.

Ipom(A,S). (o, B) € Aiff (0,(a,B)) € S.

Seq
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Igya (B, S, A). The predicate IsoIS(F, A, B, «) stating that F' is an order
isomorphism from A to {(f1,52) € B : (B1,) € B and (f,a) € B} is read-
ily seen to be A}. Let ¢1 be IsolS(F, A4, Sy, ). Let ¢ be (B1,52) € B &
(o, B1, B2) € S1. A 1 formula for Ip,q is IF3a(p1 A d2) V A > Sy A B = ().
A TI} formula for I, is A < So AVFVB(¢1 = ¢2) VA > Sy A B = (. Thus,
Igva(B, S, A) is a Al predicate.

Iper(T,S, A, B). Let ¢1 be IsolS(F1, A, Sy, «). Let ¢g be IsolS(Fy, A, Sy, ).
Let ¢3 be (£1,&) € To & (€1,&) € So A (&1 = aV (&) € So) A (§2,8) €
So. Let ¢4 be (§,71,72) € Th < (§,m,72) € S1 A € € Fld(Tp). Let ¢ be
<§1,§2> e Ty & <51,§2> € Sy A (51 =aV <Oé,§1> S So) A E% formula for
Ipstr is A > BAS = 0V A < B A (3F3F3a3B(d1 A g2 A d3 A ¢g) V
B > SoANTFF 3a(pr NP5 A ps) V A > Sy AS =0). Transforming the E% formula
to a II formula is routine. Thus, Irs. (T, S, A, B) is a Al predicate.

Using these predicates, using well-known methods (see [7] for example),
each formula ¢ over Log can be translated to an “equivalent” formula ¢! over
Lo. Formulas over Lo which are translations of Ay formulas over Log will be
called A formula, and similarly for ${ and I1{. Predicates are said to be X1,
If, or Al analogously to the i case.

The (standard) translation of atomic formulas is as follows. If ¢ is a term let
¢y —¢ denote the formula V; = t1A---AVy = ti, where V' = V}, and each conjunct
is an interpreting formula of a function symbol with appropriate free variables.
Let ¢y < be the interpreting formula for < with appropriate free variables For
an atomic formula ¢ < u, a ¥ translation is EIVV_V(QZ)V:t A Ow=u N py<w). A
I} translation is VVW(¢V:t APw =y = ¢y<w ). Atomic formulas involving the
equality predicates are translated similarly.

For x € Inac, Vi is a structure for Lo. 1§, , will be used to denote the
classes satisfying Ip,q(A) in V. Likewise, I geq denotes the classes satisfying
Iseq(S). These families are closed under the functions 4+, Dom, Eval, and Rstr.
In this manner, V;, may be considered as a structure for Lsog. I, 61" d consists
of the well-orders on k; this will be proved below.

13. Congruence

The interpreting formula for = is not equality; however, as will be seen, it
is a congruence relation, in the structures Vi, k € Inac. Write A = B for
I-,,,(A,B), and and S =T for I_,_ (S, T).

Lemma 22. In any V), = (of either sort) is a congruence relation.



FUNCTION CHAINS FROM... 679

Proof. First, < is readily seen to be reflexive and transitive, by properties
of the functions involved. That = on I, ; is an equivalence relation follows
at once. That < respects this relation follows by properties of the functions.
Verification that = on Ig., is an equivalence relation is straightforward, using
the claim for = on ordinals, and the identity function, the inverse function, and
composition of functions to construct the function Fy of the definition, in the
cases of the reflexive, symmetric, and transitive laws respectively. For the func-
tion symbols, given the (unique) isomorphisms witnessing that the arguments
are equivalent, the isomorphism witnessing that the values are equivalent may
be readily constructed. U

Lemma 23. Suppose ¢ is a Aé formula with free variables for the val-
ues Xq,...,Xy. Suppose X1 = X{,..., X = X;. Then ¢(Xy,...,X;) iff
#(X],...,X}). The same holds if ¢ is 1 or I1].

Proof. The proof is a routine induction using lemma 22. Using the lemma
and the translation described in section 4, it follows for a term that given
equivalent arguments, the values are equivalent. The theorem for atomic for-
mulas now follows using the lemma. The induction step for the proposi-
tional connectives is routine. The translation of 3Y < (Y, Xq,..., Xk) is
VIV (py=t ANY <V AY(Y, Xq,...,X))). By the claim for terms, V = V'. It
is easily seen that Y’ may be taken as Y, and the claim follows by induction.
The claim for the unbounded existential quantifier follows also. O

14. Quantifier Complexity
Lemma 24. A A} predicate is Al

Proof. Tt suffices to show that it is ¥{. This is observed for atomic for-
mulas in section 12. It follows at once for negated atomic formulas; it may be
assumed for the induction that all negations apply to atomic formulas. The
claim follows for A and V be standard methods. It follows for bounded ex-
istential quantification by standard methods, noting that X < t has already
been shown to be Al. Suppose ¢ is VA < t3IW; - Wit (A, W) where 9 is
A}. Using theorem 23 it follows that ¢ is equivalent to 3V3§(¢v:t ANVz(z €
Fld(A) = ¥ (Vey, S1zy - -, Skz))), where w € A, iff (w,z) € V and w € S;; iff
(x,w) € 5. O
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Corollary 25. A X! predicate is ©1. A TI! predicate isI1}. A Al predicate
is Al

Proof. Immediate. O

15. Absoluteness

Lemma 26. a. For A C Vg, Ev Iorq(A) iff =y, LIorq(A).
b. For S C V., Ev Iseq(S) iff =y, Iseq(S).

Proof. Most claims follow by standard absoluteness arguments and the fact
that a, § € Vj iff (o, B) € V. For part a, if f is a descending chain in Vj; then
it is a descending chain in V. Conversely, if f is a descending chain in V' then
f is a bounded subset of V, whence f € V. Part b follows using part a. [

Lemma 27. a. For A,B el ,, Fv. A<Biff =y A< B.
b. For A,BeIf,, v, A= B iff =y A= B.
c. For S,Telg,, Fv, S=Tif Fy S=T.

Proof. Note that if F': A+ B then F' C V,,. Parts a and b follow readily.
Part ¢ follows similarly. O

Lemma 28. Suppose ¢(Y, X1,...,X,,) Iis the interpreting formula of a
function symbol of Lps. Suppose Xi,..., X, C V... If =v G(Y, X1,...,Xk)
then Y - V,,g. ForY - Vm ):V G(Y,Xl, ce ,Xk) iff ):Vn G(Y,Xl, ce ,Xk)

Proof. If G is Aé the claim follows by routine verification. If A, B C Vj
and IsolS(F, A, B,a) then F C V,, and o € V,. Using the X1 form for G and
lemma 27, the claim follows for Eval and Rstr as well. ]

Theorem 29. Suppose ¢ is a formula with free variables for the values
X1,...,X}. Suppose k € Inac, and X; CV, for 1 <i<k.

a. If ¢ is Al then =y, ¢(X1,..., Xy) iff vy o(X1, ..., Xg).

b. If ¢ is X1 then if =y, ¢(X1, ..., Xy) then =y ¢(Xq, ..., Xp).

c. If ¢ is I then if =y ¢(X1,...,X}). then =y, ¢(Xq,..., X})
The same claims hold if V' and Vj;, are replaced by V,; and V) where A\ € Inac,;.
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Proof. For a term t, using the translation described in section 4 and lemma
28, vy, Y =tiff =y Y = t. The lemma for atomic formulas follows by
lemma 27. The induction step for the propositional connectives is routine.
If =y, 3Y < ty(Y, X1,..., X)) then clearly (using the induction hypothesis)
|:V Y < t¢(Y,X1,... ,Xk) If ):V Y < t?,b(Y,Xl,... ,Xk) then for some
Z CV,and some Y < Z, (Y, Xy,...,X)). Clearly there is a Y/ C V, such
that Y = Y. By lemma 23, (Y, X1,..., X}); it follows that |y, Y <
t(Y,X1q,...,Xk). This proves part a. Part b follows by a variant of the
argument for the bounded existential quantifier. Part ¢ follows from part b by
contraposition. The last claim follows by essentially the same argument. O

Part a can be strengthened. Say that a predicate is uniformly Al if it is
defined by a %! formula ¢, and there is a II{ formula ¢ with the same free
variables, such that =y, ¢ < ¢ for any k € Inac.

Theorem 30. Suppose ¢ is a formula with free variables for the values
X1,..., X, which is uniformly A{. Suppose k € Inac, A € Inac,, and X; C V)
for 1 <1< k. Then }:VA qb(Xl, N ,Xk;) iff }:Vﬁ qb(Xl, N ,Xk;).

Proof. If |=y, ¢ then =y, ¢ by theorem 29. If =y, ¢ then =y, 9 so =y, ¥
by theorem 29, so =y, ¢. O

16. Ups Orders

Say that (¢,) is a Usps formula pair at x € Inac if the following hold:
1. ¢(A, B, ]3) is ¥1, (A, B, ]3) is 11, and A, B are restricted to satisfy Io,q4.
2. In V,, and V) for A € Inac,, ¢ and 1 define the same predicate.
3. For each P the predicate on A, B defined in V,, and each V) is a WPS.
Letting < denote the order, by lemma 23, Ot(=) < k7.

Theorem 31. Suppose requirements 1 and 2 above hold, and = is a WPS
in V.. Then < is a Usog order.

Proof. Axioms T1-T4 are I1{, and the claim for these follows using theorem
30. For axiom F, suppose X; C V) for ¢ € w, and in V), X;11 < X; for all i.
Then this is true in V,;, again by theorem 30. O

Theorem 32. A Up; machine may be transformed to an equivalent Upg
formula pair.
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Proof. Recall the definition of Ipy,s from section 12. Given an input (c, k,
Ay, ...

,Ag), let Ag = {(d,d)} where d is the integer pairing function applied

to ¢, k; the input can be coded as Ag + A1 + --- + Ap. It is readily seen that
the predicate “w is the computation when the inputs are I; and Iy” is Af. The
theorem follows. O

It is worth mentioning that the preceding theorem does not hold in V,,; ¥;

is a Uy order, but is not X1

1]
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