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q−RADIUS STABILITY OF MATRIX POLYNOMIALS
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Abstract: In this paper, the q−radius stability of a matrix polynomial
P (λ) relative to an open region Ω of the complex plane and its relation to
the q−numerical range of P (λ) are investigated. Also, we obtain a lower bound
that involves the distance of Ω to the connected components of the q−numerical
range of P (λ).
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1. Introduction

Let Mn be the algebra of all n× n complex matrices. Suppose that

P (λ) = Amλm +Am−1λ
m−1 + ...+A1λ+A0, (1)

is a matrix polynomial, where Ai ∈ Mn for i = 0, 1, ...,m, Am 6= 0 and λ is a
complex variable. The numbers m and n are referred to as the degree and order
of P (λ), respectively. Matrix polynomials arise in many applications and their
spectral analysis is very important when studying linear systems of ordinary
differential equations with constant coefficients ([4]). If all the coefficients of
P (λ), as in (1), are Hermitian matrices, then P (λ) is called selfadjoint. A scalar
λ0 ∈ C is an eigenvalue of P (λ) if the system P (λ0)x = 0 has a nonzero solution
x0 ∈ C

n. This solution x0 is known as an eigenvector of P (λ) corresponding to
λ0, and the set of all eigenvalues of P (λ) is said to be the spectrum of P (λ), that
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is denoted by σ[P (λ)]. So σ[P (λ)] = {µ ∈ C : detP (µ) = 0}. The (classical)
numerical range of P (λ) = Amλm +Am−1λ

m−1 + ... + A1λ+ A0, is defined as
follows:

W [P (λ)] = {µ ∈ C : x∗P (µ)x = 0 for some nonzero x ∈ C
n}.

It is closed and contains σ[P (λ)] (see [7] for more information). The numerical
range of matrix polynomials plays an important role in the study of overdamped
vibration systems with a finite number of degree of freedom, and it is also related
to the stability theory (see e.g., [4,6,7]). For a q ∈ (0, 1], the q−numerical range
of P (λ) is defined by

Wq[P (λ)] = {µ ∈ C : y∗P (µ)x = 0 x, y ∈ C
n, x∗x = y∗y = 1, y∗x = q}. (2)

We also define q−spectrum of P (λ) as follows:

σq[P (λ)] = {µ ∈ C : detP (q−1µ) = 0}.

Clearly, Wq[P (λ)] is always closed and contains the spectrum σq[P (λ)]. When
P (λ) = q−1Iλ − A, Wq[P (λ)] coincides with the q−numerical range of matrix
A, we get

Wq(A) = {y∗Ax : x, y ∈ C
n, x∗x = y∗y = 1, y∗x = q}

(see [1,3]). Moreover, for q = 1, we obtain the numerical range of P (λ). As
shown in ([8, 9]), Wq[P (λ)] is bounded if and only if 0 /∈ Wq(Am). One can find
more about the geometry of Wq[P (λ)] in [8, 9].

2. q−Radius Stability

Consider an index set J ⊆ {0, 1, ...,m}. In this paper, we consider the q−spectrum
of perturbations of the matrix polynomial:

PJ (λ) = (Am+∆m)λm+(Am−1+∆m−1)λ
m−1+ ...+(A1+∆1)λ+A0+∆0 (3)

where ∆s = 0 for all s /∈ J . With the perturbed polynomial in (3), we associate
the n×nmatrix polynomial ∆J(λ) = ∆mλm+...+∆1λ+∆0 and the n×n(m+1)
complex matrix

DJ = [ ∆m ∆m−1 · · · ∆1 ∆0 ]. (4)
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Let Ω be an open region of C whose boundary , ∂Ω, is a piecewise smooth
curve. The matrix polynomial P (λ) is said to be Ωq− stable if σq[P (λ)] ⊂ Ω.
In this case, we define the Jq−stability radius of P (λ) relative to Ω as

RJq [P (λ),Ω] = inf
DJ

{‖ DJ ‖2: σq[Pj(λ)]
⋂

(C \ Ω) 6= ∅}.

That is, RJq [P (λ),Ω] is the distance of P (λ) to Ωq−instability, when the coef-
ficients of P (λ) indexed by J are allowed to vary.

For the proof of the main result we will need the following lemma.

Lemma 2.1. Let P (λ) be defined as in (1) and consider its perturbation
PJ(λ) as defined in (3). Also, let Ω be an open region of C such that σq[P (λ)] ⊂
Ω. Then we have

RJq [P (λ),Ω] = inf
µ∈∂Ω

{inf
DJ

{‖DJ‖2 : det (I +∆J(µ)P (µ)−1) = 0}}.

Proof. let µ ∈ ∂Ω, and note that the matrix P (µ) is invertible. Also
detPJ (µ) = 0 if and only if det (I +∆J(µ)P (µ)−1) = 0. By definition of
Jq−stability, it follows that

RJq [P (λ),Ω] = inf
µ/∈Ω

{inf
DJ

{‖DJ‖2 : detPJ(µ) = 0}}

= inf
µ∈∂Ω

{inf
DJ

{‖DJ‖2 : detPJ(µ) = 0}}

= inf
µ∈∂Ω

{inf
DJ

{‖DJ‖2 : det (I +∆J(µ)P (µ)−1) = 0}}.

So the proof is complete.

Theorem 2.2. Let P (λ) = Amλm + Am−1λ
m−1 + ... + A1λ + A0 be an

n× n matrix polynomial with detAm 6= 0, and let J ⊆ {0, 1, ...,m}. If Ω is an
open region of C such that σq[P (λ)] ⊂ Ω, then we have

RJq [P (λ),Ω] = inf{
1

√

Σk∈J ‖λ|
2k ‖P (µ)−1‖2 : λ ∈ ∂Ω}

.

Proof. Since detAm 6= 0, P (λ) has mn finite eigenvalues counting their
multiplicities ([2,5]). Let µ ∈ C \ σq[P (λ)], then P (µ) is invertible. Consider
the matrix polynomial

∆J(µ) = ∆mµm +∆m−1µ
m−1 + ...+∆1µ+∆0
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= DJ [ Iµ
m · · · Iµ I ]T ,

where DJ is defined as in (4). Suppose that det (I +∆J(µ)P (µ)−1) = 0. Then
−1 is an eigenvalue of the matrix ∆J(µ)P (µ)−1 and so, we have

1 ≤
∥

∥∆J(µ)P (µ)−1
∥

∥

2
≤ ‖∆J(µ)‖2

∥

∥P (µ)−1
∥

∥

2
.

As a consequence, we get ‖∆J(µ)‖2 ≥
∥

∥P (µ)−1
∥

∥

−1

2
which implies that

‖∆J(µ)‖2 ≥
1

√

Σk∈J |µ|
2k ‖P (µ)−1‖2

. (5)

Furthermore, one can construct matrices ∆s (s = 0, 1, ...,m) for which DJ at-
tains the above lower bound and let det(I+∆J(µ)P (µ)−1) = 0, as follows. Now
consider two vectors x, y ∈ C

n such that ‖x‖2 = 1,
∥

∥P (µ)−1x
∥

∥

2
=

∥

∥P (µ)−1
∥

∥

2
and

yj =
wj

‖P (µ)−1‖22
, (j = 1, 2, ..., n)

where w = [ w1 w2 · · · wn ]T := P (µ)−1x. Define the matrix Q0 by Q0 =

−xy∗ and let ∆S = ȳs

Σk∈J |µ|
2kQ0 for s ∈ J and ∆S = 0 if s /∈ J. Now, we get

(I +∆J(µ)P (µ)−1)x = x+Q0P (µ)−1x = x+Q0w.

Since y∗w = 1, we obtain

(I +∆J(µ)P (µ)−1)x = x− xy∗w = 0.

Thus, det(I +∆J(µ)P (µ)−1) = 0. Also, we have

‖DJ‖2 = sup{

∥

∥

∥
Q0(Σk∈J µ̄

kvk)(Σk∈J |µ|
2k)−1

∥

∥

∥

2
√

Σk∈J ‖vk‖
2
2 : vk ∈ Cn \ 0

≤
1

Σk∈J |µ|
2k

sup
vk 6=0

{
‖x‖2 ‖y‖2

∥

∥Σk∈J µ̄
kvk

∥

∥

2
√

Σk∈J ‖vk‖
2
2

}.

Moreover, we can see that

‖y‖2 =
‖w‖2

‖P (µ)−1‖22
=

∥

∥P (µ)−1x
∥

∥

2

‖P (µ)−1‖22
=

1

‖P (µ)−1‖2
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and
∥

∥

∥
Σk∈J µ̄

kvk

∥

∥

∥

2
≤

∥

∥[ I Iµ · · · Iµm ]
∥

∥

2

∥

∥[ vT0 vT1 · · · vTm ]T
∥

∥

2

where vk = 0 whenever k /∈ J. Therefore,

‖∆J(µ)‖2 ≤
1

√

Σk∈J |µ|
2k ‖P (µ)−1‖2

since ‖x‖2 = 1. So, for this special DJ , equality holds in (5). Now the proof is
complete in view of lemma 2.1, since ∂Ω ∩ σq[P (λ)] = ∅.

The notion of Jq−stability radius of P (λ) is related to the (ǫ, Jq)−pseudo
q−spectrum of P (λ) which is defined by

σǫ,Jq [P (λ)] = {µ ∈ C : µ ∈ σq[PJ(λ)] for some ∆J(λ) with ‖DJ‖2 < ǫ}

for each ǫ > 0, where PJ (λ) and DJ are defined as in (3) and (4), respectively.
One can see that σǫ,Jq [P (λ)] ⊂ Ω if and only if RJq [P (λ),Ω] > ǫ.

Theorem 2.3. Let P (λ) = Amλm + Am−1λ
m−1 + ... + A1λ + A0 be an

n× n matrix polynomial with detAm 6= 0. Also, let J ⊆ {0, 1, ...,m} and ǫ > 0
be given. Then

σǫ,Jq [P (λ)] \ σq[P (λ)] = {µ ∈ (C \ σq[P (λ)]) :
1

√

Σk∈J |µ|
2k ‖P (µ)−1‖2

≤ ǫ}.

Proof. Consider a µ in C \ σq[P (λ)]. If µ ∈ σǫ,Jq [P (λ)], then there is an
n × n matrix polynomial ∆J(µ) = ∆mµm + ... + ∆1µ + ∆0 such that ∆s = 0
for s /∈ J,

∥

∥[ ∆m · · · ∆1 ∆0 ]
∥

∥

2
≤ ǫ, and det (P (µ) + ∆J(µ)) = 0. Thus,

by (5),

1
√

Σk∈J |µ|
2k ‖P (µ)−1‖2

≤
∥

∥[ ∆m · · · ∆1 ∆0 ]
∥

∥

2
≤ ǫ.

Conversely, suppose that

1
√

Σk∈J |µ|
2k ‖P (µ)−1‖2

≤ ǫ.



746 Y. Jahanshahi, B. Yousefi

Then, as in the proof of Theorem 2.2, one can construct a matrix polynomial
∆J(µ) = ∆mµm + ...+∆1µ+∆0 such that ∆s = 0 for s /∈ J,

∥

∥[ ∆m · · · ∆1 ∆0 ]
∥

∥

2
≤ ǫ

and det (P (µ) + ∆J(µ)). Thus, µ ∈ σǫ,Jq [P (λ)].

Corollary 2.4. Let P (λ) = Amλm + Am−1λ
m−1 + ... + A1λ + A0 be an

n× n matrix polynomial with detAm 6= 0, and let J ⊆ {0, 1, ...,m} and ǫ > 0.
Then

∂(σǫ,Jq [P (λ)] \ σq[P (λ)])

= {µ ∈ (C \ σq[P (λ)]) :
1

√

Σk∈J | µ |2k ‖ P (µ)−1 ‖2
= ǫ}.
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