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SOME RESULTS ON RECONSTRUCTIBILITY

OF COLORED GRAPHS
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Abstract: In an earlier paper the author has shown that a graph is recon-
structible, except possibly if it has a single-block trunk. Here this result is
shown for colored graphs. Some other results on colored graphs are given. In
particular it is shown that reconstructibility is false for edge colored graphs.
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1. Introduction

Reconstruction of colored graphs has been considered by several authors; see
[1] for a survey, and [4] for a recent reference. Here, define a C-graph (resp.
V-graph, E-graph) to be a graph, with colors assigned to the vertices and edges
(resp. vertices, edges). V-graphs are a special case of C-graphs, where the
edges are all the same color; and similarly for E-graphs. Isomorphisms between
colored graph are required to preserve color. The deck of a colored graph is the
multiset of point-deleted subgraphs, each with its induced coloring. A colored
graph is reconstructible if it is determined by its deck. A graph G is C-recon-
structible (resp. V-reconstructible, E-reconstructible) if every vertex and edge
(resp. vertex, edge) colored version of G is reconstructible.

Recall from [2] the definition of the trunk and limbs of a connected graph
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G which is not a tree. Say that G is an SBT-graph if its trunk consists of a
single block. It is shown in [2] that all graphs which are not SBT-graphs are
reconstructible. Here this result is extended to C-graphs.

A fortiori all graphs which are not SBT-graphs are V-reconstructible. In
[6] it is shown that if all graphs are reconstructible then all graphs are V-recon-
structible. In [8], it is shown that if all inseparable graphs are reconstructible
then all graphs are reconstructible (and so V-reconstructible). Various results
of [8] can be strengthened to V-graphs, but this is omitted here.

2. Basic Facts

In the following section several classes of graphs will be shown to be C-recon-
structible, in particular those of theorem 20 of [2]. Many of these facts have
been noted previously, in particular in [7]; for convenience proof sketches will
be given. The notation Gv is used for the graph G with the vertex v deleted.
Terminology from [2] will be used without comment.

Kelly’s lemma, adapted to C-graphs, states the following. Given C-graphs
F and G, let s(F,G) denote the number of occurrences of F as an induced
subgraph of G. If G has n vertices, F has m vertices, and m < n then s(F,G) =
∑

v s(F,Gv)/(n −m). The proof in the uncolored case (q.v. see [1]) is readily
adapted to the colored case. In particular, the number of nodes, the number
of edges, the multiset of vertex colors, and the multiset of edge colors, are
determined. For a vertex v the degree and color of v are determined by the
point-deleted subgraph Gv of v. It follows that regular graphs are V-recon-
structible. Another fact about uncolored graphs which readily generalizes is
the following.

Theorem 1. A V-graph G is reconstructible iff its complement Gc is.

Proof. This follows because (Gc)v = (Gv)
c.

It follows that a graph G is V-reconstructible iff Gc is. The following fact
seems not to have a well-known reference, and is stated as a theorem.

Theorem 2. Suppose G is a V-graph, and m is the maximum vertex

degree. Then the multiset of 1-neighborhoods of the vertices of degree m in G
is reconstructible.

Proof. Suppose G has n vertices. If m = n − 1 then G is easily seen to be
reconstructible and the theorem follows in this case. Otherwise, suppose A is a
graph with a degree m vertex v such that every other vertex of A is adjacent to
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v. Then A occurs as a 1-neighborhood in G iff it occurs as an induced subgraph.
The theorem follows by Kelly’s lemma.

3. C-reconstructible classes

Theorem 3. Disconnected graphs are C-reconstructible.

Proof. For purposes of illustration a detailed proof will be given. Let G
be a disconnected C-graph. If there is a vertex v of degree 0, the components
of G are those of Gv, together with an additional single-vertex component of
the missing color, so suppose there are no degree 0 vertices. Say that a vertex
v is nonseparating if its removal does not increase the number of components.
Each component contains a nonseparating vertex (consider a spanning tree).
Thus, the number of components is the minimum such among the Gv . Further,
whether v is nonseparating is determined. For each nonseparating vertex v,
consider the sequence of component sizes for Gv in nonincreasing order. Con-
sider the sequence which is highest in the lexicographic order. The component
size list for G may be obtained by adding 1 to its last element.

Let m be the minimum size of a component. It is determined if a vertex
v is in a component of size m. Choose such a v; the components of G of size
greater than m are those for Gv. Let r be the number of components of size
m. If r > 1, consider the m vertex components for the Tu, where u ranges over
vertices in a component of size m. Each m vertex component appears (r− 1)n
times. If r = 1 choose a vertex v in the component of size m. Let u range
over the vertices of the components of size greater than m. For each such u,
let Au be the multiset of m vertex components in Gu. For each such u we can
also determined the multiset Bu of m vertex components in Gvu. The m vertex
component C of G may be determined by taking the multiset union of the Au

and of the Bu; the former will equal the latter, with some number of additional
elements which are all copies of C.

Lemma 4. Paths are C-reconstructible.

Proof. Let l be the length of the path. Suppose l ≥ 3. Let p be one of the
Gv where v is an end vertex, and let e be the remaining edge. There are two
cases, pe and prer where r denotes reversal. Write p as aqb where a, b are edges.
Gw for the other end vertex w is qbe and qrarer in the two cases. If q = qr,
b = ar, and e = er then the possibilities are the same. Suppose eaq = qbe. If l
is odd it follows that G is monochrome. if l is even p might be either ae · · · ae
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or ea · · · ea; which may be determined from the vertex color multiset. If l = 2
the path is determined by the Gv for v an endpoint, unless p = er; the choice
between eer and ere can be made from the vertex color multiset.

Note that theorem 24 of [2] does not hold for C-paths.

Theorem 5. Trees are C-reconstructible.

Proof. The proof of theorem 24 of [2] may be adapted; the C-fronds with
their center or bicenter marked may be determined. Paths are a special case,
which has already been proved. Case 3 may be shown using the result for a
path.

Until otherwise specified, suppose G is a connected separable graphs which
is not a tree. Recall from [2] that such graphs may be divided into 4 cases,
where a case holds only if lower numbered cases do not hold.

1. There are no vertices of degree 1.

2. The trunk consists of a single block (G is an SBT-graph).

3. There are terminal blocks which are not edges.

4. All terminal blocks are edges.

Lemma 6. The multiset of the C-limbs of a C-graph G is reconstructible.

Proof. This may be proved by adapting the proof of lemma 11 of [2]. In the
case where there are limbs which are edges, let S be the set of their end-vertices;
then each such edge occurs |S| − 1 times as a limb among the Tv for v ∈ S. A
similar adaptation is necessary in considering sublimbs when there is only one
limb.

Theorem 7. G is C-reconstructible in cases 1, 3, and 4.

Proof. The proof is essentially unchanged from that of theorem 20 of [2].
The adaptations there of earlier results may be modified to handle the colored
case.
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4. S-minimal Graphs

Recall from theorem 21 of [3] that the number of paths np(B) which must be
added to a cycle to obtain an inseparable graph B equals ne−nv where nv(B),
or simply nv, equals the number of vertices and ne the number of edges. If G
is an SBT-graph with block B then ne(G)− nv(G) equals ne(B)− nv(B); this
quantity will be denoted np(G).

In [3] it is shown that an SBT-graph G is reconstructible if np(G) ≤ 1. It
is certainly of interest whether G is reconstructible if np(G) = 2. This case can
be divided into subcases; a general method for doing so can be given.

An inseparable graph A is said to be a subdivision of an inseparable graph
B if A is obtained from B by dividing edges by adding degree 2 vertices. Note
that nP (A) = np(B). B is said to be S-minimal if it is not a subdivision of
another graph.

Theorem 8. An inseparable graph A is a subdivision of a unique S-

minimal graph B.

Proof. If A is a cycle then B is the 3-cycle. Otherwise, every degree 2
vertex occurs on an induced path between two vertices v and w which have
degree greater than two. If in A there are n induced paths, replace them in B
by an edge and n− 1 induced paths of length 2.

Theorem 9. There are finitely many S-minimal graph with a given value

of np.

Proof. If np is 0 then the 3-cycle is the only S-minimal graph. If np > 0,
let B be an S-minimal graph for value np − 1. For each non-adjacent pair of
vertices v,w, add an edge between them. For each adjacent pair of vertices v,w,
add a path of length 2 between v and w; also, replace the edge with a path
of length 3, then add a path of length 2 joining each pair of adjacent vertices
in turn. For each pair v, e of a vertex and an edge, with v not incident to e,
subdivide e with a vertex u and add an edge between v and u. For each pair
e, f of edges, subdivide e with a vertex u and f with a vertex t and add an edge
between u and t. This results in a finite collection of graphs. Reducing each,
each S-minimal graph for value np appears.

For np = 0 there is a single S-minimal graph, namely a 3-cycle. For np = 1
there is a single S-minimal graph, namely a 4-cycle with a diagonal. For larger
values of np a computer program may be coded. The proof of theorem 9 provides
an algorithm. This can be refined, and reduction avoided; in particular, an edge
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need not be divided if it has a parallel 2-path, or except in some cases an end
vertex of degree 2. The Nauty library [5] can be used to reject isomorphic
copies.

Figure 1 shows the number of S-minimal graphs for given np, for np up to
7. Figure 2 shows the graphs for np = 2 (these are easily enumerated by hand).
For future reference, these graphs will be numbered 1 to 4 from left to right.

np 2 3 4 5 6 7

# 4 17 118 1198 17133 311757

Figure 1. Number of S-minimal graphs

Figure 2: S-minimal graphs for np = 2

5. V-Reconstructibility if Inseparable and np ≤ 2

V-reconstructibility of an inseparable graph G falls short of reconstructibility
of SBT-graphs with block G; but it is a problem of independent interest and
provides some perspective.

Let l(p) denote the length of a path. If G is an inseparable V-graph and
p is an induced path with l(p) ≥ 4 then G is reconstructible. Indeed, if v is
a vertex of p which is neither an end vertex nor adjacent to one then G is
readily reconstructed from Gv. From this and theorem 9, for each np there is a
finite set S of graphs, such that if every G ∈ S is V-reconstructible then every
inseparable graph G with np(G) ≤ np is V-reconstructible.

There is a general result which is of interest. Say that an inseparable graph
G is almost acyclic if there is a vertex v such that Gv is a tree.

Theorem 10. If an inseparable graph G is almost acyclic then G is V-re-

constructible.
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Proof. This follows by modifications to the proof of theorem 7 of [7]. For
convenience a proof is given in an appendix.

It is a question of interest whether this theorem holds for G a V-SBT-graph
with an almost acyclic trunk and a single 1-limb. Further discussion will be
omitted here, except to note that considering V-graphs only mildly complicates
the problem.

It is readily seen that G is almost acyclic if its S-Minimal ancestor is. Since
the S-Minimal graphs for np ≤ 1 are almost acyclic, if np(G) ≤ 1 then G is V-re-
constructible. Graphs 1 and 2 of figure 2 are almost acyclic, so any subdivision
of either of these graphs is V-reconstructible.

Lemma 11. If G is an inseparable graph which is a subdivision of graph

3 of figure 2 then G is V-reconstructible.

Proof. There are two pairs of degree 3 vertices, each pair joined by a single
path pi for i = 1, 2; l(p1) ≤ l(p2) may be assumed. Let the other paths between
degree 3 vertices be qj for 1 ≤ j ≤ 4. If v is an interior vertex of either pi
then l(p1) and l(p2) may be determined from Gv ; if there is no such v than
l(p1) = l(p2)− 1.

If l(p2) = l(p1) let v be an interior vertex of some qj; else if l(qj) = 3 for
some j let v be an interior vertex of qj; else if there is a pair q1, q2 of length 2
paths with the same end vertices let v be the end vertex on p2. In these cases
G is readily reconstructed from Gv.

In the remaining case, if l(p1) = 1 and l(p2) = 2, or if l(p1) = 2 and
l(p2) = 3, G may be determined from Gv where v is an end vertex of p2. If
l(p1) = 1 and l(p2) = 3, p2 may be determined from Gu where u is an end
vertex of p1. G may then be determined from Gv where v is an interior vertex
of p2.

Lemma 12. If G is an inseparable graph which is a subdivision of graph

4 of figure 2 then G is V-reconstructible.

Proof. Suppose there is a 3-cycle; then Gmay be determined fromGv where
v is the vertex not on the 3-cycle. Suppose there is a degree 3 vertex v with 3
incident induced paths of length greater than 1; then Gmay be determined from
Gv. There remain 4 cases, according to the subgraph of the length 1 induced
paths between degree 3 vertices: A, two disjoint edges; B, a path of length 3;
C, a star of 3 edges; and D, a 4 cycle. In each case G may be reconstructed
from Gv where v is an interior vertex of an induced path of length greater than
1; in case B the middle induced path should be chosen.
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Theorem 13. If G is an inseparable graph with np ≤ 2 then G is V-re-

constructible.

Proof. This follows by theorem 10 and lemmas 11 and 12.

6. V-Reconstructibility for nv ≤ 9

In [1] it is stated that B. Manvel verified that graphs with 7 or fewer vertices are
V-reconstructible. Here the number of vertices is raised to 9, using a computer
program. By remarks in section 1 it suffices to show this for SBT-graphs. By
theorem 1, in fact, it suffices to consider graphs G such that both G and Gc are
SBT-graphs; such graphs will be called BSBT-graphs.

If nv = 3 an SBT-graph is a 3-cycle. If nv = 4 an SBT graph is a 4-cycle,
a 4-cycle with a diagonal, K4, or a 3-cycle with an edge attached to a vertex.
None of these is a BSBT-graphs.

Figure 3 gives the number of SBT-graphs and BSBT-graphs for 4 ≤ nv ≤ 9.
Only those BSBT-graphs with ne ≤

(

n
2

)

/2 need be verified.

nv 4 5 6 7 8 9
# graphs 11 34 156 1044 12346 274668

# SBT-graphs 4 17 99 779 10524 254606
# BSBT-graphs 0 10 56 468 7123 194066

Figure 3. Number of (B)SBT-graphs

Since the vertex degree sequence and the color class size sequence are re-
constructible, only those graphs with given values for these need be considered,
in turn for each possibility; this reduces the amount of memory required. The
V-graphs in each “batch” need to be canonicalized. This can be done by rep-
resenting a V-graph as a bipartite graph, with a class A for the graph vertices,
and a class B for the colors. Vertices of A are joined by the edges of the graph,
and the vertex for a color is joined to the vertices in A which are assigned that
color. These graphs can be canonicalized using the Nauty library [5], with the
vertices initially partitioned into the two classes A and B.

The point-deleted subgraph need to be canonicalized. A point worth men-
tioning is that the memory for the canonicalized graphs may be re-used for the
point-deleted subgraphs, by making the slots for the former larger than neces-
sary. The search could be refined in various ways to reduce space requirement
further, for example using theorem 2; but this was omitted.
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Using the methods just indicated, it was verified that all V-graphs with n
vertices are reconstructible, for 5 ≤ v ≤ 9.

7. E-Reconstructibility is False for K5

The following theorem and corollary may be found in [7]; for convenience proofs
are given.

Theorem 14. Suppose G is an E-reconstructible graph. Suppose H is G
with a vertex and edge coloring. Then unless the vertex coloring is a bipartition

of H, H is reconstructible.

Proof. Suppose w.l.g. that G is connected. Let F beH, with each edge label
l replaced by 〈l, {a, b}〉 where a, b are the labels in H of the vertices incident
to the edge. The deck of F is readily determined from the deck of H, so by
hypothesis F is determined. If the label of any vertex can be determined then
H can be. If the vertices of an adjacent pair have the same label then both
their labels are determined. If for a vertex v, the set of colors of its neighbors
has cardinality greater than 1, the label of v is determined. In the remaining
case, the vertex labeling forms a bipartition.

Corollary 15. If Kn is E-reconstructible then all graphs on n vertices are

C-reconstructible.

Proof. By the theorem, Kn is C-reconstructible. Let G be a C-graph on n
vertices. Let H be the edge coloring of Kn obtained by connecting non-adjacent
edges of G with an edge, colored with a new color. The deck for H is readily
obtained from the deck for G, and by hypothesis H may be obtained, whence
G may be.

In [7] it is stated that Kn is E-reconstructible for n ≤ 5, and a brief sketch
of a proof is given. Here, a more detailed proof for n = 4 is given. A computer
program was written to verify the claim for K5 and K6. It found a counterex-
ample when n = 5.

Suppose G is an edge-coloring of K4.

Case T1, there is a monochromatic triangle. The remaining colors may be
assigned arbitrarily.

Case S1, there is a a vertex v such that all incident edges are the same color.
The remaining colors may be assigned arbitrarily.
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Case S3, there is a v such that the incident edges have distinct colors (say
012). The other Gv are triangles with edge colorings 01x, 02y, and 12z. If
two of these are equal, say 01x = 02y, then x = 2, y = 1; and z is readily
determined. If no two are equal then G is determined.

Case P1, there is a monochromatic path of length 3, say 0-1-2-3 of color 0.
By T1 neither 0-2 nor 1-3 can have color 0. By S3 0-3 and 0-2, and 0-3 and 1-3,
are the same color. Thus, G consists of two monochromatic length 3 paths.

In the remaining case, without loss of generality the edges 0-1,0-2,0-3 are
colored 0,0,1. Let 1-2,1-3,2-3 have colors x, y, z respectively. By T1 and P1 x.
y, and z are not 0. By S3, x = y and x = z. So G is reconstructible by T1.

For computer verification an enumeration of the edge colorings is needed.
A simple method is to enumerate the partitions of an

(

n
2

)

element set and
canonicalize. Nauty can be used for the latter. An edge coloring of Kn can
be coded as a graph with vertex classes V , E, and C, of sizes n,

(

n
2

)

, and
(

n
2

)

.
There is an edge between vertex v ∈ V and each vertex {v,w} ∈ E. There is
an edge between vertex e ∈ E and c ∈ C of edge e has color c.

The set partitions can be enumerated so that the S(p) with the partition p
of n for the color class size list is contiguous. Indeed, say that q precedes p if p
is obtained from q by increasing the size of a part or adding a new part of size
1. S(p) may be determined from the S(q) for q which precede p.

This method is adequate for n = 6. There are 1382958545 set partitions of a
15 element set. On some systems (e.g. Linux) the file must be split. On a 3GHz
desktop the time to canonicalize is 10 hours; there are 1974452 edge colorings.
It is of interest to enumerate the edge labelings of Kn without enumerating the
set partitions; in particular this would undoubtedly be necessary to enumerate
the edge labelings of K7.

After all this preparation the E-reconstructibility of K5 was checked; a
counterexample was found, as shown in figure 4. Only two color classes are
shown; the remaining edges are given distinct colors, distinct from these. In
each case, in the deck, there is one copy of K4 with all distinct colors, and four
copies of K4 with a path of length 2 for one color class and all other classes a
single edge.
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8. Appendix. Proof of Theorem 10

In this section a proof of lemma 10 will be given. Let G be an inseparable
V-graph, let v denote a vertex such that Gv is a tree, and let d1 denote the
degree of v. It is readily seen that d1 is the largest degree of a vertex of G.
Suppose d2 is the second largest. Various cases will be considered successively;
in each case previous cases are assumed not to hold. If d1 = 2 then G is a cycle
and is V-reconstructible.

Let r be the number of leaves in the tree Gv. If r = d1 then G is readily
reconstructed from Gv.

Suppose d1 = d2. G consists of d1 induced paths between v and a vertex
w; by previous cases one of the paths has length 1. If d1 ≥ 4 then w is readily
found in Gv , and G reconstructed. If d1 = 3, let l1 ≤ l2 ≤ 3 be the lengths
of paths of length greater than 1. These can be determined by considering
Gu which have a cycle. If l1 = l2 G may be reconstructed from Gv. In the
remaining case l1 = 2, l2 = 3, G may readily be reconstructed from {Gu} where
u ranges over the non-end vertices of the path of length 3.

The cases d1 = 3 and d2 = d1 = 4 occur as previous cases; in the remaining
case where d1 ≤ 4, G is a subdivision of graph 2 of figure 2. The proof is similar
to that of lemma 11; v is the degree 4 vertex. Let p be the path between the
two degree 3 vertices. Let the other induced paths be qj for 1 ≤ j ≤ 4. If u
is an interior vertex of p than l(p) may be determined from Gu; if there is no
such u than l(p) = 1.

If there is an end vertex of p such that the two other paths incident to u
have length greater than 1 then G may be determined from Gv. Otherwise,
renumbering if necessary, suppose q1 and q2 are length 1 paths incident to the
ends of p, and l(q3) ≤ l(q4). If l(q3) = l(q4) G may be reconstructed from Gv .
Otherwise, if l(p) > 1 G may be determined from Gu where u is the interior
vertex of q4 adjacent to an end of p.

In the remaining case for d1 = 3, G is a 3-cycle with a path q3 of length 2
parallel to one edge, and a path q4 of length 3 parallel to a second. Let u be
the vertex of q4 adjacent to v; the color of v is known, so if the two degree 3
vertices in all cycles in Gu are different colors G is determined; and if they are
the same color then the choice is irrelevant.

Thus, d1 ≥ 5 may be assumed. Suppose d1 = d2 + 1. Recalling that r is
the number of leaves, r ≥ d2 − 1, so r = d1 − 2, r = d1 − 1, or r = d1. The
case r = d1 has already been treated. G contains a unique vertex t of degree
d1 − 1 and there are 3 cases, r = d1 − 2, r = d1 − 1 and t is adjacent to v, and
r = d1 − 1 and t is not adjacent to v, In all 3 cases there is a unique vertex u
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of degree 3. G may be reconstructed from Gu: if u is not adjacent to t then in
Gu there are 3 degree 1 vertices, and if u is adjacent to t then in Gu there are
2 degree 1 vertices and a unique degree d1 − 2 vertex.

There remains the case d1 ≥ d2+2. Whether u is not v may be determined.
For each such u, v may be found in Gu; delete it and flag its neighbors. By
theorem 5 Gv with the neighbors of v flagged may be determined, and G may
be determined from this.
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