THE MONOPHONIC GRAPHOIDAL COVERING NUMBER OF A GRAPH

P. Titus1§, S. Santha Kumari2

1Department of Mathematics
University College of Engineering Nagercoil
Anna University
Tirunelveli Region
Nagercoil, 629 004, INDIA

2Department of Mathematics
Udaya School of Engineering
Vellamodi, 629 204, INDIA

Abstract: A chord of a path P is an edge joining two non-adjacent vertices of P. A path P is called a monophonic path if it is a chordless path. A monophonic graphoidal cover of a graph G is a collection ψ_m of monophonic paths in G such that every vertex of G is an internal vertex of at most one monophonic path in ψ_m and every edge of G is in exactly one monophonic path in ψ_m. The minimum cardinality of a monophonic graphoidal cover of G is called the monophonic graphoidal covering number of G and is denoted by η_m. We determine bounds for it and characterize graphs which realize these bounds. Also, for any positive integer n with $q - p + 2 \leq n \leq q - 1$, there exists a tree T such that the monophonic graphoidal covering number is n.

AMS Subject Classification: 05C70

Key Words: graphoidal cover, acyclic graphoidal cover, geodesic graphoidal cover, monophonic path, monophonic graphoidal cover, monophonic graphoidal covering number

§Correspondence author
1. Introduction

By a graph $G = (V, E)$ we mean a finite, undirected connected graph without loops or multiple edges. The order and size of G are denoted by p and q respectively. For basic graph theoretic terminology we refer to Harary[6]. The concept of graphoidal cover was introduced by Acharya and Sampathkumar[2] and further studied in [1, 3, 7, 8].

A graphoidal cover of a graph G is a collection ψ of (not necessarily open) paths in G satisfying the following conditions.

(i) Every path in ψ has at least two vertices.

(ii) Every vertex of G is an internal vertex of at most one path in ψ.

(iii) Every edge of G is in exactly one path in ψ.

The minimum cardinality of a graphoidal cover of G is called the graphoidal covering number of G and is denoted by $\eta(G)$.

The collection ψ is called an acyclic graphoidal cover of G if no member of ψ is cycle; it is called a geodesic graphoidal cover if every member of ψ is a shortest path in G. The minimum cardinality of an acyclic (geodesic) graphoidal cover of G is called the acyclic (geodesic) graphoidal covering number of G and is denoted by $\eta_a(\eta_g)$. The acyclic graphoidal covering number and geodesic graphoidal covering number are studied in [4, 5].

A chord of a path P is an edge joining any two non-adjacent vertices of P. A path P is called a monophonic path if it is a chordless path. For any two vertices u and v in a connected graph G, the monophonic distance $d_m(u, v)$ from u to v is defined as the length of a longest $u - v$ monophonic path in G. The monophonic eccentricity $e_m(v)$ of a vertex v in G is $e_m(v) = \max\{d_m(v, u) : u \in V(G)\}$. The monophonic radius is $rad_m(G) = \min\{e_m(v) : v \in V(G)\}$ and the monophonic diameter is $diam_m(G) = \max\{e_m(v) : v \in V(G)\}$. The monophonic distance was introduced and studied in [9, 10].

The following theorems will be used in the sequel.

Theorem 1.1. [6] Every non-trivial connected graph has at least two vertices which are not cut vertices.

Theorem 1.2. [6] Let G be a connected graph with at least three vertices. The following statements are equivalent:

(i) G is a block

(ii) Every two vertices of G lie on a common cycle.

Theorem 1.3. [5] Let $K_{m,n}(1 \leq m \leq n)$ be a bipartite graph. Then
\[
\eta_g(K_{m,n}) = \begin{cases}
1 & \text{if } m = 1, n = 1 \\
 n - 1 & \text{if } m = 1, n \geq 2 \\
 n & \text{if } m = 2, n \geq 2 \\
 m + n - 1 & \text{if } m = 3, n = 3, 4 \\
 m + n & \text{if } m = 3, n = 5 \\
 2n - 3 & \text{if } m = 3, n \geq 6 \\
 mn - m - n & \text{if } m, n \geq 4.
\end{cases}
\]

Throughout this paper \(G\) denotes a connected graph with at least two vertices.

2. Monophonic Graphoidal Cover

Definition 2.1. A *monophonic graphoidal cover* of a graph \(G\) is a collection \(\psi_m\) of monophonic paths in \(G\) such that every vertex of \(G\) is an internal vertex of at most one monophonic path in \(\psi_m\) and every edge of \(G\) is in exactly one monophonic path in \(\psi_m\). The minimum cardinality of a monophonic graphoidal cover of \(G\) is called the *monophonic graphoidal covering number* of \(G\) and is denoted by \(\eta_m(G)\).

Example 2.2. For the graph \(G\) given in Figure 2.1, \(\psi_m = \{(v_1, v_2, v_3, v_4, v_5, v_6, v_7), (v_3, v_{10}, v_1, v_8, v_7, v_9, v_5)\}\) is a minimum monophonic graphoidal cover of \(G\) and so \(\eta_m(G) = 2\).

![Figure 2.1: G](image)

Theorem 2.3. For any connected graph \(G\), \(\eta(G) \leq \eta_a(G) \leq \eta_m(G) \leq \eta_g(G)\).

Proof. Since any acyclic graphoidal cover is a graphoidal cover and any monophonic graphoidal cover is an acyclic graphoidal cover, we have \(\eta(G) \leq \eta_a(G) \leq \eta_m(G)\). Also, since every geodesic is a monophonic path, we have every
geodesic graphoidal cover is a monophonic graphoidal cover and so \(\eta_m(G) \leq \eta_g(G) \). Hence \(\eta(G) \leq \eta_a(G) \leq \eta_m(G) \leq \eta_g(G) \).

Remark 2.4. For the graph \(K_2 \), \(\eta(K_2) = \eta_a(K_2) = 1 \), for the cycle \(C_5 \), \(\eta_a(C_5) = \eta_m(C_5) = 2 \), for the cycle \(C_3 \), \(\eta_m(C_3) = \eta_g(C_3) = 3 \). Further, for a tree \(T \), \(\eta(T) = \eta_a(T) = \eta_m(T) = \eta_g(T) = n - 1 \), where \(n \) is the number of end vertices of \(T \). All the inequalities in Theorem 2.3 can be strict. For the graph \(G \) given in Figure 2.2, \(\eta(G) = 2 \), \(\eta_a(G) = 3 \), \(\eta_m(G) = 4 \) and \(\eta_g(G) = 5 \). Thus we have \(\eta(G) < \eta_a(G) < \eta_m(G) < \eta_g(G) \).

![Figure 2.2: G](image)

Since \(q - p \leq \eta_a(G) \leq q \) and \(\eta_a(G) \leq \eta_m(G) \leq q \), we have \(q - p \leq \eta_m(G) \leq q \).

Now, we proceed to characterize graphs \(G \) for which the bounds of \(\eta_m(G) \) are attained.

For any monophonic graphoidal cover \(\psi_m \) of a graph \(G \), let \(t_{\psi_m} \) denote the number of vertices of \(G \) which are not internal vertices of any path in \(\psi_m \). Let \(t_m = \min t_{\psi_m} \), where the minimum is taken over all graphoidal covers of \(G \).

Theorem 2.5. For any graph \(G \), \(\eta_m(G) = q - p + t_m \).

Proof. Let \(\psi_m \) be any monophonic graphoidal cover of \(G \). Then \(q = \sum_{P \in \psi_m} |E(P)| = |\psi_m| + \sum_{P \in \psi_m} t_m(P) = |\psi_m| + p - t_{\psi_m} \). Therefore \(|\psi_m| = q - p + t_{\psi_m} \). Since \(\eta_m(G) \) is the minimum cardinality of a monophonic graphoidal cover of \(G \), we have \(\eta_m(G) = q - p + t_m \). \(\square \)

Corollary 2.6. Let \(T \) be a tree with \(n \) pendant vertices. Then \(\eta_m(T) = n - 1 \).

Corollary 2.7. Let \(G \) be a graph having \(n \) simplicial vertices. Then \(\eta_m(G) \geq q - p + n \). Furthermore, equality holds if and only if there exists a monophonic graphoidal cover \(\psi_m \) of \(G \) such that every non-simplicial vertex of \(G \) is an internal vertex of a unique monophonic path in \(\psi_m \).

The following proposition is the characterization result of the lower bound of \(\eta_m(G) \) and it follows from Corollary 2.7.
Proposition 2.8. For any connected graph \(G \) of order at least 3, \(\eta_m(G) = q - p \) if and only if \(G \) has no simplicial vertices and there exists a monophonic graphoidal cover \(\psi_m \) such that every vertex of \(G \) is an internal vertex of a unique monophonic path in \(\psi_m \).

Theorem 2.9. For any connected graph \(G \), \(\eta_m(G) = q \) if and only if \(G \) is complete.

Proof. Let \(G \) be a complete graph. Since any two vertices of \(G \) are adjacent, the length of any monophonic path is one. Hence \(E(G) \) is the unique monophonic graphoidal cover of \(G \) and so \(\eta_m(G) = q \).

Conversely, suppose that \(\eta_m(G) = q \). Claim that \(G \) is complete. If \(G \) is not complete, then there exists a monophonic path, say \(P \), in \(G \) such that \(|E(P)| > 1 \). Then \(\psi_m = \{E(G) - E(P)\} \cup \{P\} \) is a monophonic graphoidal cover of \(G \) and so \(\eta_m(G) \leq q - 1 \), which is a contradiction. \(\square \)

Theorem 2.10. For any connected graph \(G \) of order \(p \geq 3 \), \(\eta_m(G) = q - 1 \) if and only if \(G = K_1 + \bigcup m_jK_j \), where \(\sum m_j \geq 2 \).

Proof. Let \(\eta_m(G) = q - 1 \). Since \(p \geq 3 \), by Theorem 1.1 there exists a vertex \(x \), which is not a cut vertex of \(G \). If \(G \) has two or more cut vertices, then let \(P \) be a monophonic path containing at least two cut vertices. Then \(|E(P)| \geq 3 \). Clearly, \(\psi_m = \{E(G) - E(P)\} \cup \{P\} \) is a monophonic graphoidal cover of \(G \) and so \(\eta_m(G) \leq |\psi_m| = q - 2 \), which is a contradiction. Thus the number of cut vertices \(k \) of \(G \) is at most one.

Case (i): If \(k = 0 \), then the graph \(G \) is a block. If \(p = 3 \), then \(G = K_3 \) and so by Theorem 2.9, \(\eta_m(G) = q \), which is a contradiction to the assumption. If \(p \geq 4 \), we claim that \(G \) is complete. Suppose that \(G \) is not complete. Then there exists two vertices \(x \) and \(y \) in \(G \) such that \(d(x,y) \geq 2 \). By Theorem 1.2, \(x \) and \(y \) lie on a common cycle and hence \(x \) and \(y \) lie on a smallest cycle \(C = x, x_1, x_2, ..., y, ..., x_n, x \) of length at least 4. Clearly, all the edges of \(C \) lie on either an \(x-y \) monophonic path, say \(P_1 \), or an \(y-x \) monophonic path, say \(P_2 \). Then \(\psi_m = \{E(G) - E(C)\} \cup \{P_1, P_2\} \) is a monophonic graphoidal cover of \(G \) and so \(\eta_m(G) \leq q - 2 \), which is a contradiction. Hence \(G \) is complete and so by Theorem 2.9, \(\eta_m(G) = q \), which is again a contradiction. Thus \(k \neq 0 \).

Case (ii): If \(k = 1 \), let \(x \) be the cut vertex of \(G \). If \(p = 3 \), then \(G = P_3 = K_1 + \bigcup m_jK_1 \) where \(\sum m_j = 2 \). If \(p \geq 4 \), we claim that \(G = K_1 + \bigcup m_jK_j \), \(\sum m_j \geq 2 \). It is enough to prove that every block of \(G \) is complete. Suppose that there exists a block \(B \), which is not complete. Let \(u \) and \(v \) be two vertices in \(B \) such that \(d(u,v) \geq 2 \). Then as in Case (i), \(\eta_m(G) \leq q - 2 \), which is a
contradiction. Thus every block of G is complete so that $G = K_1 + \cup m_j K_j$, where K_1 is the vertex x and $\sum m_j \geq 2$.

Theorem 2.11. For any cycle C_p ($p \geq 4$), $\eta_m(C_p) = 2$.

Proof. Let $C_p : v_1, v_2, v_3, ..., v_p, v_1$ be a cycle of order p. Then $\psi_m = \{(v_1, v_2, v_3), (v_3, v_4, ..., v_p, v_1)\}$ is a minimum monophonic graphoidal cover of C_p and hence $\eta_m(C_p) = 2$.

Since every monophonic path in $K_{m,n}$ is a geodesic, we have the following result by Theorem 1.3.

Theorem 2.12. Let $K_{m,n}(1 \leq m \leq n)$ be a bipartite graph. Then

$$
\eta_m(K_{m,n}) = \begin{cases}
1 & \text{if } m = 1, n = 1 \\
n - 1 & \text{if } m = 1, n \geq 2 \\
n & \text{if } m = 2, n \geq 2 \\
m + n - 1 & \text{if } m = 3, n = 3, 4 \\
m + n & \text{if } m = 3, n = 5 \\
2n - 3 & \text{if } m = 3, n \geq 6 \\
mn - m - n & \text{if } m, n \geq 4.
\end{cases}
$$

Theorem 2.13. Let G be a unicyclic graph with n pendant vertices. Let C be the unique cycle in G having length greater than 3 and let k be the number of vertices of degree greater than 2 on C. Then

$$
\eta_m(G) = \begin{cases}
2 & \text{if } k = 0 \\
n & \text{if there exists two non-adjacent vertices of degree } > 2 \text{ on } C \text{ (or) all vertices in } C \text{ are of degree } > 2 \\
n + 1 & \text{otherwise.}
\end{cases}
$$

Proof. Let $C : v_0, v_1, v_2, ..., v_l, v_0$ be the unique cycle in G having length greater than 3.

Case (i): $k = 0$. Then $G = C$ and by Theorem 2.11, $\eta_m(G) = 2$.

Case (ii): $k = 1$. Let v_0 (say) be the unique vertex of degree greater than 2 on C. Let $G' = G - \{v_1\}$. Then G' is a tree with $n + 1$ pendant vertices and hence by Corollary 2.6, $\eta_m(G') = n$. Let ψ'_m be a minimum monophonic graphoidal cover of G'. Clearly any path in ψ'_m is a monophonic path in G, we have $\psi_m = \psi'_m \cup \{(v_0, v_1, v_2)\}$ is a monophonic graphoidal cover of G. Hence $\eta_m(G) \leq n + 1$.

Also, at least one vertex on \(C \) and all the \(n \) pendant vertices are exterior vertices of any minimum monophonic graphoidal cover of \(G \), we have \(t_m \geq n + 1 \). Then by Theorem 2.5, \(\eta_m(G) = q - p + t_m \geq n + 1 \). Hence \(\eta_m(G) = n + 1 \).

Case (iii): \(k = 2 \) and the vertices of degree greater than \(2 \) on \(C \) are adjacent in \(G \).

Let \(v_0, v_1 \) be vertices of degree greater than \(2 \) on \(C \). Let \(P = (v_1, v_2, v_3) \) be a \(v_1 - v_3 \) monophonic path in \(G \). Let \(G' \) be the subgraph obtained by deleting \(v_2 \) from \(G \). Clearly \(G' \) is a tree with \(n + 1 \) pendant vertices and hence by Corollary 2.6, \(\eta_m(G') = n \). If \(\psi'_m \) is a minimum monophonic graphoidal cover of \(G' \), then \(\psi'_m \cup \{P\} \) is a monophonic graphoidal cover of \(G \) and hence \(\eta_m(G) \leq n + 1 \). Also, at least one vertex on \(C \) and all the \(n \) pendant vertices are exterior vertices of any minimum monophonic graphoidal cover of \(G \), we have \(t_m \geq n + 1 \). Then by Theorem 2.5, \(\eta_m(G) \geq n + 1 \). Hence \(\eta_m(G) = n + 1 \).

Case (iv): \(k \geq 2 \) and there exists two non-adjacent vertices of degree greater than \(2 \) on \(C \).

Let \(u, v \) be vertices of degree greater than \(2 \) on \(C \) such that all vertices in a \((u-v)\)-section of \(C \) other than \(u, v \) have degree \(2 \). Let \(P \) denote this \((u-v)\)-section and let \(G'' \) be the subgraph obtained by deleting all the internal vertices of \(P \). Clearly \(G'' \) is a tree with \(n \) pendant vertices and hence by Corollary 2.6, \(\eta_m(G'') = n - 1 \). If \(\psi''_m \) is a minimum monophonic graphoidal cover of \(G'' \), then \(\psi''_m \cup \{P\} \) is a monophonic graphoidal cover of \(G \) and hence \(\eta_m(G) \leq n \). Also, since \(G \) has \(n \) pendant vertices, \(t_m \geq n \) so that \(\eta_m(G) = n \).

Case (v): \(k \geq 3 \) and all the vertices of \(C \) are of degree greater than \(2 \).

Let \(H = G - \{v_1v_2, v_2v_3\} \). Let \(H' \) and \(H'' \) be the components of \(H \) with \(H' \) contain the vertices \(v_1, v_3 \) and \(H'' \) contains the vertex \(v_2 \). Let \(r \) be the number of pendant vertices in \(H' \) and let \(s \) be the number of pendant vertices in \(H'' \). Since any pendant vertex of \(H' \) or \(H'' \) is a pendent vertex of \(G \), we have \(n = r + s \). Let \(G' = H' \) and \(G'' = H'' \cup \{v_1v_2, v_2v_3\} \). Then \(G' \) contains \(r \) pendant vertices and \(G'' \) contains \(s + 2 \) pendant vertices. Clearly \(G' \) and \(G'' \) are trees and hence by Corollary 2.6, \(\eta_m(G') = r - 1 \) and \(\eta_m(G'') = s + 1 \). Let \(\psi'_m \) be a minimum monophonic graphoidal cover of \(G' \) and let \(\psi''_m \) be a minimum monophonic graphoidal cover of \(G'' \). Then \(\psi'_m \cup \psi''_m \) is a monophonic graphoidal cover of \(G \) and hence \(\eta_m(G) \leq r - 1 + s + 1 = n \). Also, since \(G \) has \(n \) pendant vertices, \(t_m \geq n \) so that \(\eta_m(G) = n \).

We have seen that if \(G \) is a connected graph of order \(p \geq 3 \), then \(q - p \leq \eta_m(G) \leq q \). Also we have \(\eta_m(G) = q - p \) if and only if \(G \) has no simplicial vertices and there exists a monophonic graphoidal cover \(\psi_m \) such that every
vertex of G is an internal vertex of a unique monophonic path in ψ and $\eta_m(G) = q$ if and only if G is complete. Also, it is proved that $\eta_m(G) = q - 1$ if and only if $G = K_1 + \cup m_j K_j$, where $\sum m_j \geq 2$. In the following theorem, we give an improved bounds for the monophonic graphoidal covering number of a graph in terms of its size and monophonic diameter.

Theorem 2.14. For any connected graph G of order $p \geq 2$,
$$\left\lceil \frac{q}{d_m} \right\rceil \leq \eta_m(G) \leq q - d_m + 1,$$
where d_m is the monophonic diameter of G.

Proof. Let ψ_m be a minimum monophonic graphoidal cover of G. Since every edge of G is in exactly one monophonic path in ψ_m, we have $q = \sum_{P \in \psi_m} |E(P)|$. Since $|E(P)| \leq d_m$ for each P in ψ_m, we have $q \leq \eta_m(G).d_m$. Hence $\eta_m(G) \geq \left\lceil \frac{q}{d_m} \right\rceil$. Let Q be a monophonic diametral path of G. It is clear that $\{(E(G) - E(Q)) \cup Q\}$ is a monophonic graphoidal cover of G. Hence $\eta_m(G) \leq |E(G) - E(Q)| + 1 = q - d_m + 1$.

Now we give a realization result for the monophonic graphoidal covering number with some suitable conditions.

Theorem 2.15. For any positive integer n with $q - p + 2 \leq n \leq q - p + 1$, there exists a tree T such that the monophonic graphoidal covering number is n.

Proof. Let $P : v_1, v_2, v_3, ..., v_{q-n+2}$ be a path of order $q - n + 2$. Let T be a tree obtained from P by adding $n - 1$ new vertices $u_1, u_2, ..., u_{n-1}$ and joining each vertex $u_i (1 \leq i \leq n - 1)$ to the vertex v_{q-n+1}. The tree T is given in Figure 2.3 and it has $n + 1$ pendant vertices. Then by Corollary 2.6, $\eta_m(T) = n$.

![Figure 2.3: T](image)

Remark 2.16. In a tree T, $q = p - 1$ and so $q - p, q - p + 1$ are non-positive numbers. Hence there does not exist a tree T whose monophonic graphoidal covering number is either $q - p$ or $q - p + 1$. Also, by Theorem 2.9, $\eta_m(G) = q$ if and only if G is complete. Thus there does not exist a tree with the monophonic graphoidal covering number is $q - p$ or $q - p + 1$, or $q - 1$.
Problem 2.17. For any positive integer n with $q - p \leq n \leq q$, does there exist a connected graph G such that G is not a tree and the monophonic graphoidal covering number is n?

References

