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1. Introduction and Preliminaries

The theory of probabilistic metric spaces is an important part of stochastic
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Analysis, and so it is of interest to develop the fixed point theory in such
spaces. The first result from the fixed point theory in probabilistic metric
spaces is obtained by Sehgal and Bharucha-Reid [9].

Definition 1.1. (see [8]) A mapping f : R → R
+ is called distribution

function if it is non-decreasing and left-continuous with inf{F (t) : t ∈ R} = 0
and sup{F (t) : t ∈ R} = 1. We will denote L by the set of all distribution
functions.

Definition 1.2. (see [3]) A probabilistic metric space is a pair (X,F ),
where X is a nonempty set and F : X × X → L is a mapping defined by
F (x, y) = Fx,y satisfying for all x, y, z ∈ X and t, s ≥ 0,

(p1) Fx,y(t) = 1 for all t > 0 if and only if x = y,

(p2) Fx,y(0) = 0,

(p3) Fx,y(t) = Fy,x(t),

(p4) If Fx,y(t) = 1 and Fy,z(s) = 1, then Fx,z(t+ s) = 1.

Every metric space (X, d) can always be realized as a probabilistic metric
space by considering F : X ×X → L defined by Fx,y(t) = H(t− d(x, y)) for all
x, y ∈ X, where H is a specific distribution function (also known as Heaviside
function) defined by

{

0, if t ≤ 0,

1, if t > 0.

So probabilistic metric spaces offer a wider framework than that of the
metric spaces and are general enough to cover even wider statistical situations.

Definition 1.3. (see [8]) A mapping is called a t-norm if

(t1) ∆(a, 1) = a, ∆(0, 0) = 0,

(t2) ∆(a, b) = ∆(b, a),

(t3) ∆(c, d) ≥ ∆(a, b) for c ≥ a and d ≥ b,

(t4) ∆(∆(a, b), c) = ∆(a,∆(b, c)) for all a, b, c ∈ [0, 1].

Example 1.4. The following are the four basic t-norms:

(1) The minimum t-norm ∆M (a, b) = min{a, b};
(2) The product t-norm ∆P (a, b) = ab;

(3) The Lukasiewicz t-norm ∆L(a, b) = max{a+ b− 1, 0};
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(4) The weakest t-norm (drastic product)

∆D(a, b) =

{

min{a, b}, if max{a, b} = 1,

0, otherwise.

In respect of above mention t-norms, we have the following ordering:

∆D < ∆L < ∆P < ∆M .

Throughout this paper, ∆ stands for an arbitrary continuous t-norm.

Definition 1.5. (see [3]) A Menger space is a triplet (X,F,∆), where
(X,F ) is a probabilistic metric space and ∆ is a t-norm with the following
condition for all x, y, z ∈ X and t, s ≥ 0,

(p5) Fx,z(t+ s) ≥ ∆(Fx,y(t), Fy,z(s)),

Definition 1.6. (see [4]) A sequence {xn} in a Menger space (X,F,∆) is
said to be

(i) convergent at point x ∈ X if for every ǫ > 0 and λ > 0, there exists a
positive integer Nǫ,λ such that Fxn,p(ǫ) > 1− λ for all n > Nǫ,λ;

(ii) Cauchy sequence in X if for every ǫ > 0 and λ > 0, there exists a
positive integer Nǫ,λ such that Fxn,xm(ǫ) > 1− λ for all m,n > Nǫ,λ;

(iii) complete if every Cauchy sequence in X is convergent in X.

Definition 1.7. (see [3]) Let f and g be self-mappings of a Menger space
(X,F,∆). Then f and g are said to be compatible if

lim
n→∞

F (fgxn, gfxn, t) = 1

whenever {xn} is a sequence in X such that limn→∞ fxn = limn→∞ gxn = u
for some u ∈ X and for all t > 0.

Definition 1.8. Let f and g be self-mappings of a Menger space (X,F,∆).
Then f and g are said to be non-compatible if either limn→∞ F (fgxn, gfxn, t)
is non-existent or

lim
n→∞

F (fgxn, gfxn, t) 6= 1

whenever {xn} is a sequence in X such that limn→∞ fxn = limn→∞ gxn = u
for some u ∈ X and for all t > 0.
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In 2007, Kohli and Vashistha [2] introduced the notions of R-weak commu-
tative mappings as follows.

Definition 1.9. Let f and g be self-mappings of a Menger space (X,F,∆).
Then f and g are said to be

(1) weakly commuting if F (fgx, gfx, t) ≥ F (fx, gx, t) for all x ∈ X and
t > 0;

(2) R-weakly commuting if there exists R > 0 such that F (fgx, gfx, t) ≥
F (fx, gx, t/R) for all x ∈ X and t > 0;

(3) R-weakly commuting of the type (i) if there exists R > 0 such that
F (gfx, ffx, t) ≥ F (gx, fx, t/R) for all x ∈ X and t > 0;

(4) R-weakly commuting of the type (ii) if there exists R > 0 such that
F (fgx, ggx, t) ≥ F (fx, gx, t/R) for all x ∈ X and t > 0;

(5) R-weakly commuting of the type (iii) if there exists R > 0 such that
F (ffx, ggx, t) ≥ F (fx, gx, t/R) for all x ∈ X and t > 0.

In our further discussion, from Imdad and Ali [1], We rename R-weakly
commuting mappings of the type (i), R-weakly commuting mappings of the
type (ii) and R-weakly commuting mappings of the type (iii) by R-weakly
commuting mappings of the type (Ag), R-weakly commuting mappings of the
type (Af ) and R-weakly commuting mappings of the type (P ), respectively.

Notice that Definition 1.9 was introduced by Imdad and Ali [1] and Pathak
et. al. [7] in in a fuzzy metric space and a metric space, respectively.

Clearly, every weakly commuting mappings is R-weakly commuting with
R = 1. Moreover, all the notions of R-weak commutativity and R-weak com-
mutativity of the type (Ag), of the type (Af ) and of the type (P ) coincide at
coincidence points. Furthermore, all the four notions of R-weak commutativity
are distinct.

In 1999, Pant [5] introduced a new continuity condition, known as reciprocal
continuity as follows.

Definition 1.10. Let f and g be two self-mappings. Then f and g are
called reciprocally continuous if limn→∞ fgxn = fz and limn→∞ gfxn = fz,
whenever {xn} is a sequence such that limn→∞ fxn = limn→∞ gxn = z for
some z ∈ X.

If f and g are both continuous, then they are obviously reciprocally contin-
uous, but the converse is not be true.
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Recently, Pant et al. [6] generalized the notion of reciprocal continuity to
weak reciprocal continuity as follows.

Definition 1.11. Let f and g be two self-mappings. Then f and g are
called weakly reciprocally continuous if limn→∞ fgxn = fz or limn→∞ gfxn =
fz, whenever {xn} is a sequence such that limn→∞ fxn = limn→∞ gxn = z for
some z ∈ X.

If f and g are reciprocally continuous, then they are obviously weak recip-
rocally continuous, but the converse is not true.

2. Fixed Point Theorems using Implicit Relations

The Implict Relations (Φ): Let Φ denote the family of functions φ : [0, 1]5 →
[0, 1] such that φ is continuous and φ(x, 1, 1, x, x) = x.

These are examples.
(1) φ1(x1, x2, x3, x4, x5) = min{x1, x2, x3, x4, x5}.
(2) φ2(x1, x2, x3, x4, x5) =

x1(x1+x2+x3+x4+x5)
x1+x4+x5+2 .

(3) φ(x1, x2, x3, x4, x5) = 3
√
x1 · x4 · x5.

Now, we prove our results using these implicit relations.

Theorem 2.1. Let f and g be weakly reciprocally continuous non-

compatible self-mappings of a Menger space (X,F,∆) satisfying

(C1) f(X) ⊂ g(X);

(C2)

∫ F (fx,fy,t)

0
ϕ(s)ds ≥

∫ F (gx,gy,t)

0
ϕ(s)ds;

(C3)

∫ F (fx,f2x,t)

0
ϕ(s)ds

>

∫ φ(F (gx,gfx,t),F (fx,gx,t),F (f2x,gfx,t),F (fx,gfx,t),F (gx,f2x,t))

0
ϕ(s)ds

for all x, y ∈ X with fx 6= f2x, t > 0 and φ ∈ Φ, where ϕ : R
+ → R is

a summable non-negative Lebesque integrable mappings such that
∫ ǫ

0 ϕ(s)ds
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for each ǫ > 0. If f and g are R-weakly commuting of type (Ag) or R-weakly
commuting of type (Af ) or R-weakly commuting of the type (P ), then f and

g have a common fixed point.

Proof. Since f and g are non-compatible mappings, there exists a sequence
{xn} in X such that limn→∞ fxn = limn→∞ gxn = z for some z ∈ X, but either
limn→∞ F (fgxn, gfxn, t) 6= 1 or the limit does not exist. Since f(X) ⊂ g(X),
for each {xn}, there exists {yn} in X such that fxn = gyn. Thus limn→∞ fxn =
limn→∞ gxn = limn→∞ gyn = z. By virtue of this and using (C2) we obtain

∫ F (fxn,fyn,t)

0
ϕ(s)ds ≥

∫ F (gxn,gyn,t)

0
ϕ(s)ds.

Taking n→ ∞, we get

∫ F (z,limn→∞ fyn,t)

0
ϕ(s)ds ≥

∫ F (z,z,t)

0
ϕ(s)ds =

∫ 1

0
ϕ(s)ds,

which implies that F (z, limn→∞ fyn, t) ≥ 1 and hence limn→∞ fyn = z. There-
fore, we have limn→∞ fxn = limn→∞ gxn = limn→∞ gyn = z = limn→∞ fyn.

Suppose that f and g are R-weakly commuting of type (Ag). Then by weak
reciprocal continuity of f and g, we have limn→∞ fgxn = fz or limn→∞ gfxn =
fz

Let limn→∞ gfxn = fz. Then by R-weak commutativity of the type
(Ag) of f and g, we obtain F (ffyn, gfyn, t) ≥ F (fyn, gyn, t/R) and hence
limn→∞ F (ffyn, gz, t) ≥ F (z, z, t/R) = 1, which implies that limn→∞ ffyn =
gz. Also, using (C2), we get

∫ F (ffyn,fz,t)

0
ϕ(s)ds ≥

∫ F (gfyn,gz,t)

0
ϕ(s)ds.

Taking n→ ∞, we obtains

∫ F (gz,fz,t)

0
ϕ(s)ds ≥

∫ F (gz,gz,t)

0
ϕ(s)ds.

Then we have fz = gz. Again by using R-weak commutativity of type (Ag),
F (ffz, gfz, t) ≥ F (fz, gz, t/R) = 1. This yields ffz = gfz and ffz = fgz =
gfz = ggz.
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If fz 6= ffz, then by using (C3), we get

∫ F (fz,f2z,t)

0
ϕ(s)ds

>

∫ φ(F (gz,gfz,t),F (fz,gz,t),F (f2z,gfz,t),F (fz,gfz,t),F (gz,f2z,t))

0
ϕ(s)ds

=

∫ φ(F (fz,f2z,t),1,1,F (fz,f2z,t),F (fz,f2z,t))

0
ϕ(s)ds

=

∫ F (fz,f2z,t)

0
ϕ(s)ds,

which is a contradiction. Hence fz = ffz = gfz and fz is a common fixed
point of f and g.

Similarly, if limn→∞ fgxn = fz, then fz is a common fixed point of f and
g.

Also, if f and g are R-weakly commuting of types (Af ) or (P ), then the
conclusions hold. This completes the proof.

The following corollaries follow easily.

Corollary 2.2. Let f and g be weakly reciprocally continuous non-

compatible self-mappings of a Menger space (X,F,∆) satisfying the conditions

(C1), (C2) and

(C4)

∫ F (fx,f2x,t)

0
ϕ(s)ds

>

∫ min{F (gx,gfx,t),F (fx,gx,t),F (f2x,gfx,t),F (fx,gfx,t),F (gx,f2x,t)}

0
ϕ(s)ds

for all x, y ∈ X with fx 6= f2x, t > 0 and φ ∈ Φ, where ϕ : R+ → R is a

a summable non-negative Lebesque integrable mappings such that
∫ ǫ

0 ϕ(s)ds
for each ǫ > 0. If f and g are R-weakly commuting of type (Ag) or R-weakly
commuting of type (Af ) or R-weakly commuting of the type (P ), then f and

g have a common fixed point.

Corollary 2.3. Let f and g be weakly reciprocally continuous non-

compatible self-mappings of a Menger space (X,F,∆) satisfying the conditions
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(C1), (C2) and

(C5)

∫ F (fx,f2x,t)

0
ϕ(s)ds

>

∫
F (gx,gfx,t)(F (gx,gfx,t)+F (fx,gx,t)+F (f2x,gfx,t)+F (fx,gfx,t)+F (gx,f2x,t))

F (gx,gfx,t)+F (fx,gfx,t)+F (gx,f2x,t)+2

0
ϕ(s)ds

for all x, y ∈ X with fx 6= f2x, t > 0 and φ ∈ Φ, where ϕ : R+ → R is a

a summable non-negative Lebesque integrable mappings such that
∫ ǫ

0 ϕ(s)ds
for each ǫ > 0. If f and g are R-weakly commuting of type (Ag) or R-weakly
commuting of type (Af ) or R-weakly commuting of the type (P ), then f and

g have a common fixed point.

Corollary 2.4. Let f and g be weakly reciprocally continuous non-

compatible self-mappings of a Menger space (X,F,∆) satisfying the conditions

(C1), (C2) and

(C6)

∫ F (fx,f2x,t)

0
ϕ(s)ds >

∫ 3
√
F (gx,gfx,t)·F (fx,gfx,t)·F (gx,f2x,t)

0
ϕ(s)ds

for all x, y ∈ X with fx 6= f2x, t > 0 and φ ∈ Φ, where ϕ : R+ → R is a

a summable non-negative Lebesque integrable mappings such that
∫ ǫ

0 ϕ(s)ds
for each ǫ > 0. If f and g are R-weakly commuting of type (Ag) or R-weakly
commuting of type (Af ) or R-weakly commuting of the type (P ), then f and

g have a common fixed point.

The Implict Relation (Ψ): Let Ψ denote the family of functions ψ :
[0, 1]4 → [0, 1] such that ψ is continuous and ψ(x, 1, x, 1) = x.

These are examples.

(1) ψ1(x1, x2, x3, x4) = min{x1, x2, x3, x4}.
(2) ψ2(x1, x2, x3, x4) =

√
x1 · x3.

Next, we prove our main results.

Theorem 2.5. Let f and g be weakly reciprocally continuous non-

compatible self-mappings of a Menger space (X,F,∆) satisfying the conditions
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(C1), (C2) and

(C7)

∫ F (fx,f2x,t)

0
ϕ(s)ds

>

∫ ψ(F (gx,gfx,t),F (fx,gx,t),F (fx,gfx,t),F (f2x,gfx,t))

0
ϕ(s)ds

for all x, y ∈ X with fx 6= f2x, t > 0 and ψ ∈ Ψ, where ϕ : R+ → R is a

a summable non-negative Lebesque integrable mappings such that
∫ ǫ

0 ϕ(s)ds
for each ǫ > 0. If f and g are R-weakly commuting of type (Ag) or R-weakly
commuting of type (Af ) or R-weakly commuting of the type (P ), then f and

g have a common fixed point.

Proof. As in the proof of Theorem 2.1, we obtain ffz = gfz and ffz =
fgz = gfz = ggz.

If fz 6= ffz, then by using (C7), we get

∫ F (fz,f2z,t)

0
ϕ(s)ds

>

∫ ψ(F (gz,gfz,t),F (fz,gz,t),F (fz,gfz,t),F (f2z,gfz,t))

0
ϕ(s)ds

=

∫ ψ(F (fz,f2z,t),1,F (fz,f2z,t),1)

0
ϕ(s)ds

=

∫ F (fz,f2z,t)

0
ϕ(s)ds,

which is a contradiction. Hence fz = ffz = gfz and fz is a common fixed
point of f and g.

Similarly, if limn→∞ fgxn = fz, then fz is a common fixed point of f and
g.

Also, if f and g are R-weakly commuting of types (Af ) or (P ), then the
conclusions hold. This completes the proof.

The following corollaries follow easily.

Corollary 2.6. Let f and g be weakly reciprocally continuous non-

compatible self-mappings of a Menger space (X,F,∆) satisfying the conditions
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(C1), (C2) and

(C8)

∫ F (fx,f2x,t)

0
ϕ(s)ds

>

∫ min{F (gx,gfx,t),F (fx,gx,t),F (fx,gfx,t),F (f2x,gfx,t)}

0
ϕ(s)ds

for all x, y ∈ X with fx 6= f2x, t > 0 and ψ ∈ Ψ, where ϕ : R+ → R is a

a summable non-negative Lebesque integrable mappings such that
∫ ǫ

0 ϕ(s)ds
for each ǫ > 0. If f and g are R-weakly commuting of type (Ag) or R-weakly
commuting of type (Af ) or R-weakly commuting of the type (P ), then f and

g have a common fixed point.

Corollary 2.7. Let f and g be weakly reciprocally continuous non-

compatible self-mappings of a Menger space (X,F,∆) satisfying the conditions

(C1), (C2) and

(C9)

∫ F (fx,f2x,t)

0
ϕ(s)ds >

∫

√
F (gx,gfx,t)·F (fx,gfx,t)

0
ϕ(s)ds

for all x, y ∈ X with fx 6= f2x, t > 0 and ψ ∈ Ψ, where ϕ : R+ → R is a

a summable non-negative Lebesque integrable mappings such that
∫ ǫ

0 ϕ(s)ds
for each ǫ > 0. If f and g are R-weakly commuting of type (Ag) or R-weakly
commuting of type (Af ) or R-weakly commuting of the type (P ), then f and

g have a common fixed point.
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