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Abstract: In this paper, the authors discuss the oscillatory and nonoscillatory behaviour of
solutions of some generalized mixed difference equations of the form

∆2
ℓ

(

∆α(ℓ)u(k)
)

+ δp(k)u(k) = 0, k ∈ [a,∞), (1)

∆3
ℓ

(

∆α(ℓ)u(k)
)

+ δp(k)u(k) = 0, k ∈ [a,∞), (2)

where δ = ±1 and the function p is real with p(k) ≥ c and α, ℓ are positive real.
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1. Introduction

The basic theory of difference equations is based on the operator ∆ defined as
∆u(k) = u(k + 1)− u(k), k ∈ N = {0, 1, 2, 3, · · · }. Eventhough many authors
(see [1], [19]-[23]) have suggested the definition of ∆ as

∆u(k) = u(k + ℓ)− u(k), k ∈ R, ℓ ∈ R− {0}, (3)

no significant progress took place on this line. But recently, E. Thandapani,
M.M.S. Manuel, G.B.A.Xavier [7] considered the definition of ∆ as given in (3)
and developed the theory of difference equations in a different direction. For
convenience, the operator ∆ defined by (3) is labelled as ∆ℓ and by defining its
inverse ∆−1

ℓ , many interesting results and applications in number theory were
obtained. By extending the study related to the sequences of complex numbers
and ℓ to be real, some new qualitative properties of the solutions like rotatory,
expanding, shrinking, spiral and weblike were obtained for difference equation
involving ∆ℓ. The results obtained using ∆ℓ are found in (see [7]-[14],[17],[18]).

Jerzy Popenda and B. Szmanda (see [5],[6]) defined ∆ as

∆αu(k) = u(k + 1)− αu(k) (4)

and based on this definition they studied the qualitative properties of a partic-
ular difference equation and no one else has handled this operator.

In [15] the authors extended the definition of ∆α to ∆α(ℓ) defined on u(k)
as ∆α(ℓ)v(k) = v(k + ℓ) − αv(k), where α 6= 0, ℓ > 0 are fixed and k ∈ [0,∞)

is variable. By defining the inverse ∆−1
α(ℓ), several interesting results on number

theory were obtained (see [12],[14],[15],[16]).
An equation involving both ∆ and ∆α is called mixed difference equation.

Oscillatory behaviour of solutions of certain types of mixed difference equations
have been dicussed in [3, 4, 21, 22]. An equation involving ∆ℓ and ∆α(ℓ) is called
as generalized mixed difference equation.

B. Smith and W.E. Taylor (see [21]) investigated the oscillatory behavior
of solutions of certain mixed difference equations.

In this paper the theory is extended from ∆ to ∆ℓ and ∆α to ∆α(ℓ) for
all real k ∈ [a,∞) and we discuss the oscillatory and nonoscillatory behavior of
solutions of the generalized mixed difference equations (1) and (2).

Throughout this paper, we make use the following assumptions:

(i) Nℓ(j) = {j, j + ℓ, j + 2ℓ, . . . }.

(ii) ⌈x⌉ and [x] denote upper integer and integer part of x respectively.
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(iii) j = k − ki −
[

k−ki
ℓ

]

ℓ, ki ∈ [0,∞).

2. Preliminaries

In this section, we present some preliminaries of generalized difference operator
and its inverse which will be useful for future discussion.

Definition 2.1. [7] Let u(k), k ∈ [0,∞), be a real or complex valued
function and ℓ > 0 be fixed. Then, the inverse of ∆ℓ denoted by ∆−1

ℓ is defined
as follows;

If ∆ℓv(k) = u(k), then v(k) = ∆−1
ℓ u(k) + cj , (5)

where cj is a constant for all k ∈ Nℓ(j), j = k −
[

k
ℓ

]

ℓ.

In general ∆−n
ℓ u(k) = ∆−1

ℓ (∆
−(n−1)
ℓ u(k)) for the integers n ≥ 2.

Definition 2.2. [11] The inverse of the Generalized α-difference operator,
denoted by ∆−1

α(ℓ), on u(k) is defined as follows. If ∆α(ℓ)v(k) = u(k), then

∆−1
α(ℓ)u(k) = v(k)− α[

k
ℓ ]v(j), (6)

where k ∈ Nℓ(j), j = k −
[

k
ℓ

]

ℓ.

Lemma 2.3. [7](Finite Summation formula) If the real valued function
u(k) is defined for all k ∈ [0,∞), then

∆−1
ℓ u(k)

∣

∣

∣

k

j
=

[kℓ ]
∑

r=1

u(k − rℓ) + cj, (7)

where cj is a constant for all k ∈ Nℓ(j), j = k −
[

k
ℓ

]

ℓ.

Definition 2.4. [11] The solution u(k) of a generalized difference equation
is called oscillatory if for any k1 ∈ [a,∞) there exists a k2 ∈ Nℓ(k1) such that
u(k2)u(k2 + ℓ) ≤ 0. The difference equation itself is called oscillatory if all its
solutions are oscillatory. If the solution u(k) is not oscillatory, then it is said to
be nonoscillatory (i.e. u(k)u(k + ℓ) > 0 for all k ∈ [k1,∞)).
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3. Main Results

The higher order (nth order) generalized αi− difference equation of the form
∆α1(ℓ1)(∆α2(ℓ2)(· · ·∆αn(ℓn)(v(k)) · · · )) = u(k), k ∈ [0,∞), ℓi > 0 αi 6= 0 be-
comes generalized mixed difference equation if αi = 1 for some i and n ≥ 2. In
this section we study the asymptotic behavior of the non-oscillatory solutions
of the generalized mixed difference equation (1) and (2).

Theorem 3.1. Suppose u(k) is a nonoscillatory solution of equation (1)
if

sgn u(k) = sgn ∆2
ℓu(k) 6= sgn ∆ℓu(k) = sgn ∆3

ℓu(k) (8)

and
lim
n→∞

u(k) = 0. (9)

Proof. A nonoscillatory solution of (1) may not exist if 0 < α < 1, but if it
does exist, we show that it must satisfy (8) and (9). As the negative solution of
equation (1) is also a solution of the same equation, it suffices to prove that a
positive solution of (1) satisfies (8). Let u(k) > 0 be a non-oscillatory solution
of (1) for δ = 1.

Setting r(k) = ∆α(ℓ)u(k) = u(k + ℓ)− αu(k), we get

∆2
ℓr(k) = −p(k)u(k) < 0, (10)

and so ∆ℓr(k) is (eventually) strictly decreasing. From (10) it follows that
if ∆ℓr(k) is eventually negative we must have r(k) → −∞. However this is
contradictory, since r(k) = u(k + ℓ) − αu(k) = ∆ℓu(k) + (1 − α)u(k) → −∞
implies ∆ℓu(k), forces u(k) to be eventually negative. Hence we must have

∆ℓr(k) > 0 (11)

for all large k. Indeed we will show that lim
k→∞

u(k) = 0.

Writing (1) as ∆2
ℓ

(

∆α(ℓ)u(k)
)

= −p(k)u(k), and by Lemma 2.3, when k0 is

chosen large enough so that ∆ℓr(k) > 0 for all k ≥ k0, we get

∆ℓr(k)−∆ℓr(k0) = −

[k−ℓ
ℓ ]

∑

r=0

p(k0 + rℓ)u(k0 + rℓ).

The lim inf condition on p(k) yields

0 < c

[ k−ℓ
ℓ ]

∑

r=0

u(k0 + rℓ) ≤

[k−ℓ
ℓ ]

∑

r=0

p(k0 + rℓ)u(k0 + rℓ) < ∆ℓr(k).
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Letting k → ∞, we see that

∞
∑

r=0

u(k0 + rℓ) < ∞ and therefore lim
k→∞

u(k) = 0.

Since u(k) → 0 as k → ∞ it follows that r(k) → 0 as k → ∞. From (11) we
get r(k) is increasing and hence r(k) < 0 eventually. It then follows from the
inequality r(k) = ∆ℓu(k) + (1 − α)u(k) < 0 that ∆ℓu(k) < 0 and from (11)
we obtain the relation ∆ℓr(k) = ∆2

ℓu(k) + (1− α)∆ℓu(k) > 0 and ∆2
ℓu(k) > 0.

From (10) we get ∆2
ℓr(k) = ∆3

ℓu(k) + (1 − α)∆2
ℓu(k) < 0, ∆3

ℓu(k) < 0 and the
proof is complete.

Example 3.2. The solution of the third order generalized mixed difference
equation

∆2
ℓ

(

∆α(ℓ)u(k)
)

+
(k + 2ℓ)

(3)
ℓ − (2 + α)(k + 3ℓ)(k + ℓ)

(2)
ℓ + (1 + 2α)(k + 3ℓ)

(2)
ℓ k − α(k + 3ℓ)

(3)
ℓ

(k + 3ℓ)
(3)
ℓ

× u(k) = 0,

satisfies all the conditions of Theorem 3.1 and lim
n→∞

u(k) = 0. Infact u(k) =
1

k
is one such solution.

Theorem 3.3. If u(k) is a nonoscillatory solution of (1) for δ = −1 with
α > 1 then for all k sufficiently large

sgn u(k) = sgn ∆ℓu(k) = sgn ∆2
ℓu(k), (12)

and

lim
k→∞

|u(k)| = lim
k→∞

|∆ℓu(k)| = lim
k→∞

|∆2
ℓu(k)| = ∞. (13)

Proof. Assume that u(k) > 0 for all k sufficiently large.
Taking r(k) = ∆α(ℓ)u(k) = u(k + ℓ)− αu(k), we get

∆2
ℓr(k) = p(k)u(k) > 0 (14)

and ∆ℓr(k) is increasing. If ∆ℓr(k) is eventually positive, then as k → ∞, r(k) →
∞ and since r(k) = ∆ℓu(k)+(1−α)u(k) and α > 1 it follows that ∆ℓu(k) → ∞,
which in turn implies u(k) → ∞. To see ∆2

ℓu(k) → ∞, note that u(k) → ∞
implies ∆2

ℓr(k) → ∞ and ∆ℓr(k) → ∞ because of (14). Hence the result follows
from ∆ℓr(k) = ∆2

ℓu(k) + (1− α)∆ℓu(k). Now, if ∆ℓr(k) is eventually negative
and increasing, then ∆ℓr(k) has a limit as k → ∞. However ∆ℓr(k) having a
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limit implies that

∞
∑

k=0

u(k0 + rℓ) < ∞ and this implies u(k) → 0. But u(k) → 0

implies r(k) → 0 and since r(k) is decreasing to zero we get r(k) > 0. But the
relation r(k) = ∆ℓu(k) + (1 − α)u(k) > 0 implies ∆ℓu(k) > 0, a contradiction
since u(k) > 0 and ∆ℓu(k) > 0 is inconsistent with u(k) → 0. Hence (13) can-
not have a nonoscillatory solution with ∆ℓr(k)∆

2
ℓr(k) < 0 for all k sufficiently

large.

Example 3.4. The Theorem 3.3 holds for the generalized mixed difference
equation

∆2
ℓ

(

∆α(ℓ)u(k)
)

+
2ℓ2(1− α)

k2
u(k) = 0.

Infact u(k) = k2 is one solution.

Theorem 3.5. Consider the equation (2) for δ = −1 and α ≥ 1. If u(k)
is a nonoscillatory solution, then for all k sufficiently large either

sgn u(k) = sgn ∆ℓu(k) = sgn ∆2
ℓu(k) = sgn ∆3

ℓu(k) (15)

or

sgn u(k) = sgn ∆ℓ

(

∆α(ℓ)u(k)
)

6= sgn ∆α(ℓ)u(k) = sgn ∆2
ℓ

(

∆α(ℓ)u(k)
)

. (16)

Proof. We prove the case for α > 1. Assume u(k) is eventually positive.
Taking r(k) = ∆α(ℓ)u(k) = u(k + ℓ)− αu(k), we get

∆3
ℓr(k) = p(k)u(k) > 0. (17)

Clearly ∆2
ℓr(k) is increasing. In case ∆2

ℓr(k) is eventually positive, we will
have lim

k→∞
∆ℓr(k) = lim

k→∞
r(k) = ∞ and since r(k) < u(k + ℓ) it follows that

u(k) → ∞. Since p(k) > c for large k, we have

lim
k→∞

∆3
ℓr(k) = lim

k→∞
∆2

ℓr(k) = ∞.

Since r(k) = ∆ℓu(k)+(1−α)u(k) → ∞ and α > 1 it follows that ∆ℓu(k) → ∞.
Examining ∆ℓr(k) = ∆2

ℓu(k) + (1 − α)∆ℓu(k) we see that ∆2
ℓu(k) → ∞ as

k → ∞. Continuing in this manner we see that (15) holds eventually.
Next, we consider the case where ∆3

ℓr(k) > 0 and ∆2
ℓr(k) < 0. Then,

existence of lim
k→∞

∆2
ℓr(k) and Lemma 2.3 yield
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−∆2r(k1) > ∆2r(m)−∆2r(k1) =

k−ℓ−k1−j

ℓ
∑

t=0

p(k1 + j + tℓ)u(k1 + j + tℓ)

≥ c

k−ℓ−k1−j

ℓ
∑

t=0

u(k1 + j + tℓ).

Letting m → ∞, it then follows that
∞
∑

t=0

u(k1 + j + tℓ) < ∞ and hence

lim
k→∞

u(k) = 0 which implies r(k) → 0. Thus, if ∆3
ℓr(k) > 0 and ∆2

ℓr(k) < 0

then we have

∆3
ℓr(k) > 0,∆2

ℓr(k) < 0,∆ℓr(k) > 0, (18)

because ∆2
ℓr(k) < 0 and ∆ℓr(k) < 0 is inconsistent with r(k) → 0, it then

follows that either (i) r(k) > 0 or (ii) r(k) < 0 eventually. We will show that
(i) is impossible. If (i) holds then since r(k) = ∆ℓu(k) + (1 − α)u(k) > 0, it
follows that ∆ℓu(k) > 0, in fact we have that ∆ℓu(k) > c + (α − 1)u(k) > c

for some positive constant c and so, u(k) → ∞ as k → ∞. But this implies
∆3

ℓr(k) → ∞, so we must have ∆2
ℓr(k) > 0 eventually, contradicting (18). So

(i) cannot hold, resulting (ii) holding eventually.

Example 3.6. The Theorem 3.5 holds for the generalized mixed difference
equation

∆3
ℓ

(

∆α(ℓ)u(k)
)

+
6ℓ3(1− α)

k3
u(k) = 0.

Infact u(k) = k3 is one such solution.

Theorem 3.7. Every nontrivial bounded solution of (2) for δ = 1, where
α > 1, is oscillatory.

Proof. Suppose u(k) > 0 is bounded nonoscillatory for large k.

Letting r(k) = ∆α(ℓ)u(k) = u(k + ℓ) − αu(k), we see that r(k) ≥ −αu(k)
and then

∆3
ℓr(k) = −p(k)u(k) < 0.

Obviouly ∆2r(k) is decreasing and if ∆2r(k) is eventually negative, we see that
r(k) → ∞. This clearly contradicts the boundedness of u(k). Thus, we consider
the case where ∆2r(k) > 0. In this case, lim

k→∞
∆2r(k) = t ≥ 0. Using the fact

p(k) is bounded away from zero for large k, it follows that ∆ℓr(k) < 0 and
r(k) > 0 for large k. Furthermore lim

k→∞
u(k) = 0, since ∆2

ℓr(k) → t implies
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∞
∑

r=0
u(rℓ) < ∞. Since α > 1 and r(k) = ∆ℓu(k) + (1− α)u(k) > 0, ∆ℓu(k) > 0

for all k sufficiently large. But this is a contradiction, since u(k)∆ℓu(k) > 0 is
congruent with u(k) → 0.

Example 3.8. The Fourth generalized mixed difference equation

∆3
ℓ

(

∆α(ℓ)u(k)
)

+
(1 + α2)(1 + α)3

α4
u(k) = 0,

satisfies the conditions of Theorem 3.7 and hence the solution is oscillatory.

Infact u(k) =
1

(−α)⌈
k
ℓ ⌉

is one such solution.
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