IJPAM: Volume 108, No. 2 (2016)

INFLUENCE OF AN INTERNAL HEAT SOURCE OR SINK
ON THE MAGNETOCONVECTION OF A MICROPOLAR
FLUID IN A VERTICAL CHANNEL

A. Borrelli$^1$, G. Giantesio$^2$, M.C. Patria$^3$
$^{1,3}$Dipartimento di Matematica e Informatica
Università di Ferrara
via Machiavelli 30, 44121 Ferrara, ITALY
$^2$Dipartimento di Matematica e Fisica
Università Cattolica del Sacro Cuore
via Musei 41, 25121 Brescia, ITALY

Abstract. This work examines the effects of an external uniform magnetic field and of an internal heat source or sink on the steady mixed convection in the fully developed flow of a micropolar fluid filling a vertical channel under the Oberbeck-Boussinesq approximation. The two boundaries are kept at different uniform temperatures. The velocity, the microrotation, the temperature and the induced magnetic field are analytically obtained. A selected set of pictures and Tables are reported in order to illustrate the influence of the internal heat parameter on the trend of the motion and in particular on the reverse flow.

Received: February 22, 2106

Revised: February 22, 2106

Published: October 1, 2016

AMS Subject Classification: 76D10, 76W05, 80A20

Key Words and Phrases: micropolar fluids, MHD fully developed flow, mixed convection, Boussinesq approximation, vertical channel, heat source/sink
Download paper from here.

Bibliography

1
A. Borrelli, G. Giantesio, M.C. Patria, Magnetoconvection of a micropolar fluid in a vertical channel, Int. J. Heat and Mass Transfer, 80, (2015), 614-625,doi: 10.1016/j.ijheatmasstransfer.2014.09.031.

2
K.R. Rajagopal, M. M. Ruzicka, A. R. Srinivasa, On the Oberbeck-Boussinesq approxiamtion, Mathematical Models and Methods inApplied Sciences, 6, No. 8 (1996), 1157-1167,doi: 10.1142/S0218202596000481.

3
A.C. Eringen, Theory of micropolar fluids, J. Math. Mech., 16, No. 1 (1966), 1-18,doi: 10.1512/iumj.1967.16.16001.

4
A.C. Eringen, Microcontinuum Field Theories, Vol. $I-II$, Springer-Verlag (2001).

5
G. Lukaszewicz, Micropolar Fluids Theory and Applications, Birkäuser (1999).

6
K. Vajravelu, A. Hadjinicalaou, Heat transfer in a viscous fluid over a stretching sheet with viscous dissipation and internal heat generation,Int. Comm. Heat Mass Transfer, 20, No. 3 (1993), 417-430,doi: 10.1016/0735-1933(93)90026-R.

7
M.M. Rahman, M.A. Sattar, Magnetohydrodynamic convective flow of a micropolar fluid past a continuously moving vertical porous plate in the presence of heat generation/absorption, ASME J. Heat Transfer, 128, No. 2 (2006), 142-152,doi: 10.1115/1.2136918.

8
E. Magyari, I. Pop. A. Postelnicu, Effect of the source therm on steady free convection boundary layer flows over a vertical plate in a porous medium. Part I, Transport in porous media, 67, No. 1 (2007), 49-67,doi: 10.1007/s11242-006-0012-1.

9
A.J. Chamkha, T. Grosan, I. Pop, Fully developed free convection of a micropolar fluid in a vertical channel,Int. Comm. Heat Mass Transfer, 29, No. 8 (2002), 1119-1127,doi: 10.1016/S0735-1933(02)00440-2.

10
C.Y. Cheng, Fully developed natural convection heat and mass transfer of a micropolar fluid in a vertical channel with asymmetric wall temperatures and concentrations,Int. Comm. Heat Mass Transfer, 33, No. 5 (2006), 627-635,doi: 10.1016/j.icheatmasstransfer.2006.01.014.

.




DOI: 10.12732/ijpam.v108i2.17 How to cite this paper?

Source:
International Journal of Pure and Applied Mathematics
ISSN printed version: 1311-8080
ISSN on-line version: 1314-3395
Year: 2016
Volume: 108
Issue: 2
Pages: 425 - 450


Google Scholar; DOI (International DOI Foundation); WorldCAT.

CC BY This work is licensed under the Creative Commons Attribution International License (CC BY).