International Journal of Pure and Applied Mathematics Volume 108 No. 2 2016, 477-482 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) **url:** http://www.ijpam.eu **doi:** 10.12732/ijpam.v108i2.20 # A VARIANT OF RECONSTRUCTIBILITY OF COLORED GRAPHS Martin Dowd 1613 Wintergreen Pl. Costa Mesa, CA 92626, USA **Abstract:** A variant of reconstructibility of colored graphs is defined, and some facts proved. Some computational facts from an earlier paper are revised. AMS Subject Classification: 05C60 Key Words: colored graph reconstructibility #### 1. Introduction Colored graph reconstructibility has been considered since the early 1970's (see [1]). More recent references include [7],[6],[3]. Using terminology from [3], define a C-graph to be a graph, with colors assigned to the vertices and edges. C-graphs are called colored graphs in the literature. An isomorphism ϕ of C-graphs must preserve colors (i.e., for a vertex v $\phi(v)$ must have the same color as v and similarly for edges). A C-graph is defined to be reconstructible if it is determined by its deck. That is, if G and H have the same deck, in that the members of the two decks can be paired as isomorphic pairs, then G and H are isomorphic. Given C-graphs G and H, define ϕ to be a $\bar{\mathbb{C}}$ -isomorphism if $\phi(v_1)$ and $\phi(v_2)$ have the same color whenever v_1 and v_2 do; and similarly for edges. A C-graph is defined to be $\bar{\mathbb{C}}$ -reconstructible if, whenever G and H have $\bar{\mathbb{C}}$ -isomorphic decks, in that the members of the two decks can be paired as $\bar{\mathbb{C}}$ -isomorphic pairs, then G and H are $\bar{\mathbb{C}}$ -isomorphic. Received: February 29, 2016 © 2016 Academic Publications, Ltd. Published: June 23, 2016 url: www.acadpubl.eu 478 M. Dowd Sections 6 and 7 of [3] contain many errors due to confusion of C-reconstructibility with C-reconstructibility, and will be completely revised here. All graphs will be assumed to have at least three vertices. For a graph G V(G) denotes the vertices, E(G) the edges, and for $v \in V(G)$ G_v denotes the point-deleted subgraph. #### 2. Basic Facts Define a \bar{C} -graph G to be a graph, together with partitions of its set of vertices and set of edges. An isomorphism between \bar{C} -graphs must preserve the partitions. If v is a vertex, G_v is the point deleted subgraph, together with the induced partitions, where two vertices or edges belong to the same part in G_v iff they do in G. To a C-graph G there corresponds a \bar{C} -graph \bar{G} , where a part is the vertices or edges of a given color. **Theorem 1.** Two C-graphs G, H are \bar{C} -isomorphic iff \bar{G}, \bar{H} are isomorphic. *Proof.* Indeed, a bijection ϕ from the vertex set V(G) to V(H) is a \bar{C} -isomorphism from G to H iff it is an isomorphism from \bar{G} to \bar{H} . **Theorem 2.** A C-graph G is \bar{C} -reconstructible iff the corresponding \bar{C} -graph \bar{G} is reconstructible. *Proof.* Suppose \bar{G} is reconstructible and G,H have $\bar{\mathbf{C}}$ -isomorphic decks. By theorem 1 \bar{G},\bar{H} have isomorphic decks, whence by hypothesis \bar{G},\bar{H} are isomorphic, whence by theorem 1 G,H are $\bar{\mathbf{C}}$ -isomorphic. Suppose G is $\bar{\mathbf{C}}$ -reconstructible and \bar{G},\bar{H} have isomorphic decks. A similar argument shows that \bar{G},\bar{H} are isomorphic. As in [3] define a V-graph to be a graph, with colors assigned to the vertices (alternatively a C-graph with constant edge color); and an E-graph to be a graph with edge colors. Similarly a \bar{V} -graph (resp. \bar{E} -graph) is a graph with a vertex (resp. edge) partition. The notion of \bar{E} -reconstructibility is of little interest. Indeed, all three edge partitionings of K_3 have the same deck. There are 25 edge partitionings of K_4 , having 11 decks. Hereafter, only \bar{V} -graphs will be considered. **Theorem 3.** The multiset of part sizes of a \bar{V} -graph is reconstructible. Proof. Letting G denote the graph and n_v the number of vertices, the part size multiset of G is 1^{n_v} iff the part size multiset of each G_v is 1^{n_v-1} . Otherwise, the number of parts is the maximum such among the G_v . Let S be the lexicographically greatest part size multiset among the G_v ; the part size multiset of G is readily obtained from S. Corollary 4. For a vertex v in a \bar{V} -graph G, the size of the part containing v is known from G_v . *Proof.* This value is the largest size of a part of G, whose multiplicity is 1 less in G_v . Corollary 5. A regular \bar{V} -graph G is reconstructible *Proof.* Let v be such that the part size of v is minimal. G may be reconstructed from G_v . **Theorem 6.** A \overline{V} -graph G is reconstructible iff its complement G^c is. *Proof.* This follows because $(G^c)_v = (G_v)^c$. A basic fact about V-graphs is that a disconnected V-graph is reconstructible. Essentially the same argument (see theorem 3 of [3]) shows that for a $\bar{\text{V}}$ -graph G, the components together with their vertex partitions are reconstructible. However, it does not follow (at least readily) that G is reconstructible. If G is a V-graph, G may be represented by a bipartite graph G_r which has a vertex class V for the vertices of G and a vertex class C for the colors. The edges of G_r are those of G, and an edge $\{v,c\}$ if v has color c. It is readily seen that given two V-graphs G,H with the same colors, G is isomorphic to H iff G_r and H_r are isomorphic by an isomorphism fixing V setwise and G pointwise; and G is isomorphic to G iff G_r and G are isomorphic by an isomorphism fixing G and G setwise. This observation will be used in the computations below. ## 3. Computations for V-Graphs This section revises section 6 of [3]. **Theorem 7.** For $3 \leq |V(G)| \leq 9$, \bar{G} is reconstructible. 480 M. Dowd *Proof.* For |V(G)| = 3 the 14 cases of \bar{G} may be enumerated, and the decks seen to be distinct. For $|V(G)| \geq 4$ the claim may be verified by a computer program. By results of [4] the underlying graph G is reconstructible. By theorem 6 only G where $|E(G)| \leq n(n-1)/4$ need be considered. By theorem 3, letting P denote the multiset of vertex partition part sizes, the \bar{V} -graphs for each G and P may be considered separately. Representing them as noted above, the \bar{V} -graphs may be canonicalized up to setwise fixing of the partition parts using the Nauty [5] library. Reconstructibility may be verified by canonicalizing the decks, and verifying that distinct canonicalized \bar{V} -graphs have distinct canonicalized decks. **Theorem 8.** For $3 \leq |V(G)| \leq 9$, G is V-reconstructible. *Proof.* By theorem 7, the V-graphs with a given \bar{V} -graph may be considered separately. In a vertex coloring, two parts may not have their colors exchanged if (A) they have different sizes, or (B) they have different degree sequences. For |V(G)| = 3, for 6 of 14 \overline{V} -graphs there is a single isomorphism class of vertex colorings, for 6 of them there are two classes which may be distinguished by criterion (A), and for 2 of them there are three classes which may be distinguished by criterion (B). For $|V(G)| \geq 4$ the claim may be verified by a computer program. The \bar{V} -graphs may be canonicalized "on the fly", one graph at a time. By standard results on V-reconstructibility (see [3]), only G need be considered, which are connected, have at most half the possible edges present, and are not regular. For each \bar{V} -graph, the V-graphs may be generated and canonicalized. The parts may be grouped, where in a group the size and degree sequence is the same. Each group is assigned a distinct set of colors, and colors assigned to the nodes of a part in all possible ways. Algorithm 2.14 of [2] is useful in this step. A check is made that the decks are distinct. # 4. Computations for E-Graphs This section revises Section 7 of [3]. The claims will be stated as theorems; they have already appeared in [7]. More detailed proofs will be given here. Recall from [3] that a graph G is said to be E-reconstructible if every edge coloring of G is reconstructible. Recall also that the multiset of colored edges is reconstructible, whence the multiset incident to the vertex v is known for G_v . From hereon let G denote an edge coloring of K_n . ### **Theorem 9.** K_3 is E-reconstructible. *Proof.* G is reconstructible from any G_v by adding the other two edges. \square **Theorem 10.** K_4 is E-reconstructible. *Proof.* The proof may be divided into cases. Case T1, there is a monochromatic triangle. The remaining edges may be added arbitrarily. Case S1, there is a monochromatic star. The remaining edges may be added arbitrarily. Case T3, there is a 3 colored triangle. Let 123 be the colors and xyz the colors of the other 3 edges, the complementary star. The other 3 stars are colored 12x, 13y, and 23z. If these are distinct sets then G is readily reconstructed. Otherwise, w.l.g. x=3 and y=2. Whether or not z=1 G is readily reconstructed. Case S3, there is a 3 colored star. This is similar to case T3, with stars and triangles interchanged. In the remaining case, there is a 112 star and an xyz triangle, where in the other 3 triangles 12x, 12y, 11z, x and y are 1 or 2 and z is 2 or 3. Both the cases z=3 and z=2 are readily reconstructible. ## **Theorem 11.** K_5 is E-reconstructible. Proof. Let P be a partition of n_e , the number of edges. Assign n_i colors to part i, where n_i is the value of part i. Let G be K_n with a partition Q of the edges, with part size list P. Let S_P be the set of canonicalized such G (writing a file of these may be done first). For $G \in S_P$ with set partition Q let T_Q be the set of edge colorings of K_n which agree with the colors assigned to P. It suffices to verify by computer that for each P, the graphs in $\bigcup_Q T_Q$ have distinct decks. As a preliminary step, the number partitions 1^{10} , 21^8 , 31^7 , and 2^21^6 may be omitted, since G may be seen to be reconstructible in these cases. Indeed, there is a vertex v such that in G_v the edge colors are distinct and there is an edge incident to v whose color is not one of these. G may be reconstructed from G_w where w is a vertex other than v. As noted in [3] even enumerating the set partitions of a 15 element set requires a fairly extensive computation. Further discussion of K_6 is omitted. 482 M. Dowd #### References - J. A. Bondy and R. L. Hemminger, Graph reconstruction a survey, J. Graph Theory 1 (1977), 227–268. http://dx.doi.org/10.1002 - [2] D. Kreher and D. Stinson, Combinatorial algorithms: generation, enumeration, and search, CRC Press (1999). - [3] M. Dowd, Some Results on Reconstructibility of Colored Graphs, Int. J. Pure Appl. Math. 95, no. 2 (2014), 309–321. http://dx.doi.org/ijpam.v95i2.14 - [4] B. McKay, Small graphs are reconstructible. Australasian Journal of Combinatorics 15 (1997), 123–126. - [5] B. D. McKay and A. Piperno, Practical Graph Isomorphism, II, J. Symbolic Computation 60 (2013), 94-112. http://dx.doi.org/10.1016/j.jsc.2013.09.003. - [6] R. Taylor, Note on the reconstruction of vertex colored graphs, Journal of Graph Theory 11 (1987), 39–42. DOI: 10.1002/jgt.3190110107 - J. Weinstein. Reconstructing colored graphs, Pacific Journal of Mathematics 57, No. 1, (1975), 307–314. http://dx.doi.org/10.2140/pjm.1975.57.307