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1. Introduction

Colored graph reconstructibility has been considered since the early 1970’s (see
[1]). More recent references include [7],[6],[3]. Using terminology from [3],
define a C-graph to be a graph, with colors assigned to the vertices and edges.
C-graphs are called colored graphs in the literature. An isomorphism φ of C-
graphs must preserve colors (i.e., for a vertex v φ(v) must have the same color
as v and similarly for edges). A C-graph is defined to be reconstructible if it is
determined by its deck. That is, if G and H have the same deck, in that the
members of the two decks can be paired as isomorphic pairs, then G and H are
isomorphic.

Given C-graphs G and H, define φ to be a C̄-isomorphism if φ(v1) and φ(v2)
have the same color whenever v1 and v2 do; and similarly for edges. A C-graph
is defined to be C̄-reconstructible if, whenever G and H have C̄-isomorphic
decks, in that the members of the two decks can be paired as C̄-isomorphic
pairs, then G and H are C̄-isomorphic.
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Sections 6 and 7 of [3] contain many errors due to confusion of C-recon-
structibility with C̄-reconstructibility, and will be completely revised here.

All graphs will be assumed to have at least three vertices. For a graph G
V (G) denotes the vertices, E(G) the edges, and for v ∈ V (G) Gv denotes the
point-deleted subgraph.

2. Basic Facts

Define a C̄-graph G to be a graph, together with partitions of its set of ver-
tices and set of edges. An isomorphism between C̄-graphs must preserve the
partitions. If v is a vertex, Gv is the point deleted subgraph, together with the
induced partitions, where two vertices or edges belong to the same part in Gv

iff they do in G. To a C-graph G there corresponds a C̄-graph Ḡ, where a part
is the vertices or edges of a given color.

Theorem 1. Two C-graphs G,H are C̄-isomorphic iff Ḡ, H̄ are isomor-

phic.

Proof. Indeed, a bijection φ from the vertex set V (G) to V (H) is a C̄-
isomorphism from G to H iff it is an isomorphism from Ḡ to H̄.

Theorem 2. A C-graph G is C̄-reconstructible iff the corresponding C̄-

graph Ḡ is reconstructible.

Proof. Suppose Ḡ is reconstructible and G,H have C̄-isomorphic decks.
By theorem 1 Ḡ, H̄ have isomorphic decks, whence by hypothesis Ḡ, H̄ are
isomorphic, whence by theorem 1 G,H are C̄-isomorphic. Suppose G is C̄-
reconstructible and Ḡ, H̄ have isomorphic decks. A similar argument shows
that Ḡ, H̄ are isomorphic.

As in [3] define a V-graph to be a graph, with colors assigned to the vertices
(alternatively a C-graph with constant edge color); and an E-graph to be a
graph with edge colors. Similarly a V̄-graph (resp. Ē-graph) is a graph with a
vertex (resp. edge) partition.

The notion of Ē-reconstructibility is of little interest. Indeed, all three edge
partitionings of K3 have the same deck. There are 25 edge partitionings of K4,
having 11 decks. Hereafter, only V̄-graphs will be considered.

Theorem 3. The multiset of part sizes of a V̄-graph is reconstructible.
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Proof. Letting G denote the graph and nv the number of vertices, the part
size multiset of G is 1nv iff the part size multiset of each Gv is 1

nv−1. Otherwise,
the number of parts is the maximum such among the Gv. Let S be the lexico-
graphically greatest part size multiset among the Gv; the part size multiset of
G is readily obtained from S.

Corollary 4. For a vertex v in a V̄-graph G, the size of the part containing

v is known from Gv.

Proof. This value is the largest size of a part of G, whose multiplicity is 1
less in Gv.

Corollary 5. A regular V̄-graph G is reconstructible

Proof. Let v be such that the part size of v is minimal. G may be recon-
structed from Gv .

Theorem 6. A V̄-graph G is reconstructible iff its complement Gc is.

Proof. This follows because (Gc)v = (Gv)
c.

A basic fact about V-graphs is that a disconnected V-graph is reconstruc-
tible. Essentially the same argument (see theorem 3 of [3]) shows that for a
V̄-graph G, the components together with their vertex partitions are reconstruc-
tible. However, it does not follow (at least readily) that G is reconstructible.

If G is a V-graph, G may be represented by a bipartite graph Gr which has
a vertex class V for the vertices of G and a vertex class C for the colors. The
edges of Gr are those of G, and an edge {v, c} if v has color c. It is readily seen
that given two V-graphs G,H with the same colors, G is isomorphic to H iff Gr

and Hr are isomorphic by an isomorphism fixing V setwise and C pointwise;
and Ḡ is isomorphic to H̄ iff Gr and Hr are isomorphic by an isomorphism
fixing V and C setwise. This observation will be used in the computations
below.

3. Computations for V-Graphs

This section revises section 6 of [3].

Theorem 7. For 3 ≤ |V (G)| ≤ 9, Ḡ is reconstructible.
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Proof. For |V (G)| = 3 the 14 cases of Ḡ may be enumerated, and the decks
seen to be distinct.

For |V (G)| ≥ 4 the claim may be verified by a computer program. By
results of [4] the underlying graph G is reconstructible. By theorem 6 only
G where |E(G)| ≤ n(n − 1)/4 need be considered. By theorem 3, letting P
denote the multiset of vertex partition part sizes, the V̄-graphs for each G and
P may be considered separately. Representing them as noted above, the V̄-
graphs may be canonicalized up to setwise fixing of the partition parts using the
Nauty [5] library. Reconstructibility may be verified by canonicalizing the decks,
and verifying that distinct canonicalized V̄-graphs have distinct canonicalized
decks.

Theorem 8. For 3 ≤ |V (G)| ≤ 9, G is V-reconstructible.

Proof. By theorem 7, the V-graphs with a given V̄-graph may be considered
separately. In a vertex coloring, two parts may not have their colors exchanged
if (A) they have different sizes, or (B) they have different degree sequences.

For |V (G)| = 3, for 6 of 14 V̄-graphs there is a single isomorphism class
of vertex colorings, for 6 of them there are two classes which may be distin-
guished by criterion (A), and for 2 of them there are three classes which may
be distinguished by criterion (B).

For |V (G)| ≥ 4 the claim may be verified by a computer program. The
V̄-graphs may be canonicalized “on the fly”, one graph at a time. By standard
results on V-reconstructibility (see [3]), only G need be considered, which are
connected, have at most half the possible edges present, and are not regular.
For each V̄-graph, the V-graphs may be generated and canonicalized. The parts
may be grouped, where in a group the size and degree sequence is the same.
Each group is assigned a distinct set of colors, and colors assigned to the nodes
of a part in all possible ways. Algorithm 2.14 of [2] is useful in this step. A
check is made that the decks are distinct.

4. Computations for E-Graphs

This section revises Section 7 of [3]. The claims will be stated as theorems;
they have already appeared in [7]. More detailed proofs will be given here.
Recall from [3] that a graph G is said to be E-reconstructible if every edge
coloring of G is reconstructible. Recall also that the multiset of colored edges is
reconstructible, whence the multiset incident to the vertex v is known for Gv .
From hereon let G denote an edge coloring of Kn.
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Theorem 9. K3 is E-reconstructible.

Proof. G is reconstructible from any Gv by adding the other two edges.

Theorem 10. K4 is E-reconstructible.

Proof. The proof may be divided into cases.

Case T1, there is a monochromatic triangle. The remaining edges may be
added arbitrarily.

Case S1, there is a monochromatic star. The remaining edges may be added
arbitrarily.

Case T3, there is a 3 colored triangle. Let 123 be the colors and xyz
the colors of the other 3 edges, the complementary star. The other 3 stars
are colored 12x, 13y, and 23z. If these are distinct sets then G is readily
reconstructed. Otherwise, w.l.g. x=3 and y=2. Whether or not z=1 G is
readily reconstructed.

Case S3, there is a 3 colored star. This is similar to case T3, with stars and
triangles interchanged.

In the remaining case, there is a 112 star and an xyz triangle, where in the
other 3 triangles 12x, 12y, 11z, x and y are 1 or 2 and z is 2 or 3. Both the
cases z=3 and z=2 are readily reconstructible.

Theorem 11. K5 is E-reconstructible.

Proof. Let P be a partition of ne, the number of edges. Assign ni colors to
part i, where ni is the value of part i. Let G be Kn with a partition Q of the
edges, with part size list P . Let SP be the set of canonicalized such G (writing
a file of these may be done first). For G ∈ SP with set partition Q let TQ be the
set of edge colorings of Kn which agree with the colors assigned to P . It suffices
to verify by computer that for each P , the graphs in ∪QTQ have distinct decks.

As a preliminary step, the number partitions 110, 218, 317, and 2216 may
be omitted, since G may be seen to be reconstructible in these cases. Indeed,
there is a vertex v such that in Gv the edge colors are distinct and there is an
edge incident to v whose color is not one of these. G may be reconstructed from
Gw where w is a vertex other than v.

As noted in [3] even enumerating the set partitions of a 15 element set
requires a fairly extensive computation. Further discussion of K6 is omitted.
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