IJPAM: Volume 108, No. 2 (2016)

SOME INTEGRAL TRANSFORM OF GENERALIZED
MITTAG-LEFFLER FUNCTIONS

Bhausaheb R. Sontakke$^1$, Govind P. Kamble$^2$, Mohd. Mazhar Ul-Haque$^3$
$^1$Department of Mathematics
Pratishthan College, Paithan
Dist: Aurangabad (M.S.), INDIA
$^2$Depatment of Mathematics
P.E.S. College of Engineering
Nagsenvana, Aurangabad (M.S.), INDIA
$^3$Dr. Babasaheb Ambedkar Marathwada University
Aurangabad (M.S.), INDIA

Abstract. This paper presents integral transform of Generalized Mittag-Leffler function which plays an important role to solve the differential equations and also some relations and results related to this generalized Mittag-Leffler function. The generalized Mittag-Leffler function arises in the solution of fractional order differential equations and fractional order integral equations.

Received: March 10, 2016

Revised: March 10, 2016

Published: October 1, 2016

AMS Subject Classification: 26A33, 34K37, 34A08, 45E10, 47H10

Key Words and Phrases: Laplace transform, Fourier transform, Mittag-Leffler function, generalized Mittag-Leffler function, fractional differential equation, fractional integral equation
Download paper from here.

Bibliography

1
Agarwal R.P., A propos d'une note M. Pierre Humbert,C.R.Acad.Sci. Paris 236 (1953),pp.2031-2032.

2
Chouhan Amit and Satish saraswat, Some Remarks on Generalized Mittag-Leffler Function and Fractional operators,IJMMAC Vol2, No.2, pp. 131-139.

3
GM.Mittag - Leffler, Sur la nouvelle function of $E_\alpha(x)$, C.R.Acad. Sci. Paris 137 (1903), pp.554-558.

4
Holambe T.L.and Mohammed Mazhar -ul- Haque, A remark on semigroup property in fractional calculus,International Journal of Mathematics and computer Application Research, 4(6),2014,pp.27-32.

5
Humbert P. and Agarwal R.P., Sur la function de Mittag - Leffler et quelquesunes deses generalizations, Bull. Sci.Math. (2)77(1953), pp.180-186.

6
Mohammed Mazhar-ul- Haque and Holambe T.L., A Q function in fractional calculus, Journal of Basic and Applied Research International, International knowledge press, vol. 6, issue 4 (2015),pp.248-252.

7
Mubeen S.and Habibullah G.M., k-Fractional Integrals and Applications, Int. J. Compt. Math. Science, 7(2)(2012),pp.89-94.

8
Podlubny I., Fractional Differential Equations, Academic Press, San Diego, California- U.S.A., (1999).

8
Prabhakar T.R., A Singular Integral Equation with a generalized Mittag - Leffler function in the kernel, Yokohama Math. J. 19(1971), PP.7-15.

9
Romero L., Cerutti R.and Luque L., A New Fractional Fourier Transform and convolutions products, International Journal of Pure and Applied Mathematics,66(2011),pp.397-408.

10
Shukla A.K. and Prajapati J.C., On a generalization of Mittag - Leffler function and its properties, J.Math.Anal.Appl.336(2007),pp.79-81.

11
Salim T.O. and Faraj O., A generalization of Mittag-Leffler function and Integral operator associated with the Fractional calculus, Journal of Fractional Calculus and Applications,3(5) (2012),pp.1-13.

12
Wiman A., Uber de fundamental satz in der theorie der funktionen, Acta Math. 29(1905),pp.191-201.

.




DOI: 10.12732/ijpam.v108i2.9 How to cite this paper?

Source:
International Journal of Pure and Applied Mathematics
ISSN printed version: 1311-8080
ISSN on-line version: 1314-3395
Year: 2016
Volume: 108
Issue: 2
Pages: 327 - 339


Google Scholar; DOI (International DOI Foundation); WorldCAT.

CC BY This work is licensed under the Creative Commons Attribution International License (CC BY).