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Abstract: For a vertex v of a connected graph G and a subset S of V (G), the distance

between v and S, denoted by d(v, S), is min{d(v, x) | x ∈ S}. Let Π = {S1, S2 ... Sk} be an

ordered k-partition of V (G). The representation of v with respect to Π is the k-vector r(v|Π) =

(d(v, S1), d(v, S2) ... d(v, Sk)). The k-partition is a resolving partition if the k-vectors r(v|Π),

for all v ∈ V (G) are distinct. The minimum k for which there is a resolving k-partition of

V (G) is called the partition dimension pd(G) of G. In this paper, we determine partition

dimension of Hive network, Honeycomb rhombic mesh, Honeycomb rectangular mesh.
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1. Introduction

The vertices of a connected graph are represented by partitions of vertex set
into many subsets where the distances between each vertex and subsets in
the partition are calculated. Based on this concept, resolving partition of a
graph has been introduced [2]. This concept has wide applications in chemistry,
problems of pattern recognition, image processing and navigation of robots in
networks [3, 13].

For v ∈ V (G) and S ⊂ V (G), the distance d(v, S) between v and S is defined
as d(v, S) = min {d(v, x) | x ∈ S}. The representation of v with respect to
Π is a k-vector r(v|Π) = (d(v, S1), d(v, S2) ... d(v, Sk)), where Π is an ordered
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k-partition {S1, S2, ... Sk} of V (G) and v ∈ V (G). The partition Π is called a
resolving partition for G if distinct vertices of G have distinct representation
with respect to Π. The minimum k for which there is a resolving k-partition of
V (G) is a partition dimension pd(G) of G and a resolving partition of V (G)
containing pd(G) elements is called aminimum resolving partition [1, 2, 6, 15].

For a nontrivial connected graph G, pd(G) ≤ dim(G) + 1 [2, 4] and in
case the order of G is n, n ≥ 2, then pd(G) is 2 if and only if G = Pn [2]. The
partition dimension pd(G) of a graph G with order n is n if and only if G = Kn.
Chartrand et al [2] proved that for a graph G which is neither a path nor a
complete graph with order n ≥ 4, 3 ≤ pd(G) ≤ n− 1.

The partition dimension of an n-cycle, Petersen graph, 3-cube are 3, 4 and 3
respectively [2, 15]. Partition dimension problem has been studied for circulant
networks, hexagonal and honeycomb networks [1], tree [12], cartesian product
[10], gear, helm, sunflower and friendship graph [8].

2. Honeycomb Network

Honeycomb network HC(n) is obtained from HC(n − 1) by adding a layer of
hexagons around the boundary of HC(n− 1).

(a) (b)

Figure 1: (a) 4-dimensional Hexagonal Network, (b) 3-dimensional
Honeycomb Network

The parameter n of HC(n) is determined by the number of hexagons between
the centre and boundary ofHC(n). The number of vertices and edges ofHC(n)
are 6n2 and 9n2 − 3n respectively. The diameter is 4n − 1. A 3-dimensional
Honeycomb Network is depicted in Figure 1(b).



PARTITION DIMENSION OF... 811

Honeycomb networks are widely used in computer graphics, cellular phone
base stations, image processing and for representation of benzenoid hydrocar-
bons in chemistry [11].

An Hexagonal network HX(n) of dimension n has 3n2 − 3n + 1 vertices
and 9n2 − 15n + 6 edges, where n is the number of vertices on one side of the
hexagon. A 4-dimensional Hexagonal network is depicted in Figure 1(a). The
bounded dual of HX(n) is HC(n− 1) [5].
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Y – C h a n n e l

Z – C h a n n e l
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Figure 2: (a) Coordinate system in HX(4), (b) Channels in HX(4)

Stojmenovic [11] proposed a coordinate system for a honeycomb network. This
was adapted by Paul et al [14] for assigning coordinates to the vertices in the
hexagonal network. In this scheme, three axes X, Y and Z parallel to three
edge directions and at mutual angle of 120 degrees between any two of them
are introduced as in the Figure 2(a). Lines parallel to the coordinate axes are
called as X-lines, Y -lines and Z-lines. Here X = h and X = −k are two X-lines
on either side of the X-axis. Any vertex of HX(n) is assigned with coordinates
(x, y, z) in the above scheme. A segment of an X-line in the Hexagonal network
consisting of vertices (x, y, z), with x coordinate fixed is denoted by PX . ie.,
PX = {(x0, y, z)/y1 ≤ y ≤ y2, z1 ≤ z ≤ z2}. Similarly, PY = {(x, y0, z)/x1 ≤
x ≤ x2, z1 ≤ z ≤ z2} and PZ = {(x, y, z0)/x1 ≤ x ≤ x2, y1 ≤ y ≤ y2} are the
Y -line and Z-line of a hexagonal network respectively [14]. See Figure 2(a).

An X-channel, denoted by CX is the strip between any consecutive X -
lines in HX(n). Similarly, CY and CZ are defined. It can be easily seen that,
for two vertices (x1, y1, z1) and (x2, y2, z2) of HC(n), x1 = x2 in an X-channel.
This is applicable for Y -channel and Z-channel too. The X-channel between
PX,n and PX,n−1 is represented by CX,n [1]. Nr(v) is the set of vertices at a
distance r from the vertex v of HC(n). See Figure 2(b).
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Lemma 1. [1] Nr(a
∗) ⊂ CY o CZ , where a∗ is the vertex in honeycomb.

Lemma 2. [1] For any r1 and r2, Nr1(a
∗) ∩Nr2(CX,n) is either empty or

singleton.

Theorem 3. [1] Let G be a honeycomb network HC(n). Then pd(G) = 3.

3. Hive Network

Increase in computational power demands a new design for parallel computing
and the most preferable networks are the ones with less complexity than others.
Hive network has less complexity.

A t-dimensional hive network HN(t) is composed of 2t− 1 interconnected
honeycomb networks of dimension n and adjacent honeycombs are connected
with additional vertical edges.

A vertex in the hive network is addressed by four integer coordinates (x, y, z,
v). The v coordinate indicates the position of a honeycomb in the hive network.
The value v is zero for the tth honeycomb in hive network.

The value of v will be subsequent positive integers for the honeycombs
which are located in the upward direction from the tth honeycomb. Similarly,
the value of v will be subsequent negative integers for the honeycombs which
are located in the downward direction from the tth honeycomb. A vertex in
hive network has only one vertical edge but two extreme layers in hive network
does not have a vertical edge for every second vertex [9].

Lemma 4. Let G be a hive network HN(t). Then pd(G) > 3.

Proof. Hive network of size t is composed of 2t − 1 interconnected honey-
comb network and pd(HC(n)) = 3 [1]. Thus pd(G) > 3.
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Figure 3: Channels in HN(2).

HCi(n) denotes the ith honeycomb of dimension n in the hive network HN(t)
and a∗

i , (t−1 ≤ i ≤ 1−t) denotes a vertex in HCi(n). CXi
, CYi

and CZi
-denotes

the X channel, Y channel and Z channel in the ith honeycomb of hive network
respectively. A hive network HN(2) with channels are depicted in Figure 3.

Lemma 5. For any r1 and r2, Nr1(a
∗
i ) ∩ Nr2(CXi,n) is either empty or

singleton.

Theorem 6. Let G be a hive network HN(t), t ≥ 2. Then pd(G) = 4.

Proof. Let S1 = {a∗
1−t}, S2 = {a∗

i , t−1 ≤ i ≤ 2−t}, S3 = {CXi,n, t−1 ≤ i ≤
1−t}, S4 = V (G)−{S1∪S2∪S3}. Let u = (x1, y1, z1, v1) and v = (x2, y2, z2, v2)
be two vertices of G.

Claim: Π
.
= {S1, S2, S3, S4} is a resolving 4-partition of G.

We consider two cases, namely when u and v are in the same honeycomb
and u and v are in different honeycomb in hive network.

Case {v1 = v2}

Subcase {x1 = x2}: Then u, v ∈ CXi
and d(u, a∗

1−t) 6= d(v, a∗
1−t). Thus

d(u, S1) 6= d(v, S1).

Subcase {y1 = y2}: In this case, u, v ∈ CYi
. For u, v ∈ Nr1(a

∗
i ), d(u, S3) 6=

d(v, S3). Suppose d(u, S3) = d(v, S3), then u, v /∈ Nr1(a
∗
i ) which would imply

that d(u, S2) 6= d(v, S2) whenever t−1 ≤ i ≤ 2− t and d(u, S1) 6= d(v, S1) when
i = 1− t.
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Subcase {z1 = z2}: Here, u, v ∈ CZi
. Let u, v ∈ Nr1(a

∗
i ). If d(u, S1)

= d(v, S1) then d(u, S3) 6= d(v, S3). Suppose d(u, S3) = d(v, S3) then u, v /∈
Nr1(a

∗
i ) which is a contradiction.

Subcase {x1 6= x2, y1 6= y2, z1 6= z2}: Suppose that d(u, S2) = d(v, S2) for
t − 1 ≤ i ≤ 2 − t or d(u, S1) = d(v, S1) for i = 1 − t, then u, v ∈ Nr1(a

∗
i ) for

some r1. Thus d(u, S3) 6= d(v, S3).

Case {v1 6= v2}: Then u ∈ HCi(n) and v ∈ HCj(n), i 6= j, which results
in the following subcases.

Subcase {x1 = x2}: Either d(u, S1) = d(v, S1) or d(u, S1) 6= d(v, S1).
Suppose d(u, S1) = d(v, S1), then u ∈ Nr1(a

∗
i ) ⊂ HCi(n) and v ∈ Nr2(a

∗
j ) ⊂

HCj(n), where r1 6= r2. Thus d(u, S2) 6= d(v, S2).

Subcase {y1 = y2}: Which leads to the fact that either d(u, S1) 6= d(v, S1)
or d(u, S2) 6= d(v, S2).

Similarly, we can prove for z1 = z2.

Subcase {x1 6= x2, y1 6= y2, z1 6= z2}: In this case, either d(u, S1) 6= d(v, S1)
or d(u, S3) 6= d(v, S3).

Hence pd(G) = 4.

4. Honeycomb Rhombic Mesh

A Honeycomb Rhombic Mesh of size n, denoted by HRoM(n), has n vertices
on each line to the boundary of rhombus. The number of edges of HRoM(n) is
3n2−2n. The diameter of HRoM(n) is 4n−3 [11]. Figure 4 shows HRoM(6).

Figure 4: HRoM(6).
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We partition the vertices of HRoM(n) into n segments, namely B1, B2 ... Bn

where each Bi consists of 2n vertices as shown in Figure 5.

a
*

B1

B2

B3

B4

Figure 5:HRoM(4) with 4 segments

Lemma 7. Let Nr(a
∗) = {ui}, 1 ≤ i ≤ k, for some k. If up, uq ∈ Nr(a

∗),
then up and uq will not be in the same segment Bi.

Proof. It is true that d(u, a∗) 6= d(v, a∗) for all u, v ∈ Bi. Thus any two
vertices in Bi are not equidistant from a∗.

The following lemma states the distance between a vertex and a segment.

Lemma 8. If v ∈ Bi, then d(v,Bj) = |i− j|.

According to lemma 7, no two vertices in the same segments are equidistant
from a∗ which helps to formulate the following lemma.

Lemma 9. For any r1 and r2, Nr1(a
∗) ∩ Nr2(Bi) is either empty or

singleton.

Theorem 10. Let G = HRoM(n). Then pd(G) = 3.

Proof. Let S1 = {a∗}, S2 = {b1}, S3 = V (G) − {S1 ∪ S2}. Let u and v be
any two vertices of G.

Claim: Π = {S1, S2, S3} is a resolving 3-partition of G.
Case {u, v ∈ Bi}: In view of lemma 8, d(u, S2) = d(v, S2) but d(u, S1) 6=

d(v, S1) by lemma 7.
Case {u ∈ Bi, v ∈ Bj, i 6= j}: Then d(u, S2) 6= d(v, S2).
Thus, no two vertices in G will have identical representation with respect

to Π. Hence pd(G) = 3.
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5. Honeycomb Rectangular Mesh

Honeycomb Rectangular Mesh(HReM) has two parameters, the length and
breadth of two sides of rectangle which is denoted by HReM(m, n), where
m and n denotes length and breadth respectively. The number of edges of
HReM(m, n) is 3mn−m−n and the diameter of HReM(m, n) is 2n+m− 2
for 2n ≥ m and 2m− 2, otherwise [11].

HReM(m, n) is partitioned into 2n segments B1, B2 ... B2n where each Bi

consists of n vertices. HReM(4, 4) with 8 segments is shown in Figure 6.

a
* B1

B2

B3

B4

B5

B6

B7

B8

Figure 6: HReM(4, 4) with 8 segments

The following lemmas are formulated based on the particular pattern of parti-
tion shown in Figure 6.

Lemma 11. Let Nr(a
∗) = {ui}, 1 ≤ i ≤ k, for some k. If up, uq ∈ Nr(a

∗),
then up and uq will not be in the same segment Bi.

Lemma 12. If v ∈ Bi, then d(v,Bj) = |i− j|.

Lemma 13. For any r1 and r2, Nr1(a
∗) ∩ Nr2(Bi) is either empty or

singleton.

Theorem 14. Let G = HReM(m, n). Then pd(G) = 3.

Proof. Let S1 = {a∗}, S2 = {b1 ∪ b2}, S3 = V (G) − {S1 ∪ S2}.
Claim: Π = {S1, S2, S3} is a resolving 3-partition of G.
Case {u, v ∈ Bi}: In this case, d(u, S2) = d(v, S2) but d(u, S1) 6= d(v, S1)

by lemmas 11, 12.

Case {u ∈ Bi, v ∈ Bj, i 6= j}: Then d(u, S2) 6= d(v, S2).
Thus, no two vertices in G will have identical representation with respect

to Π. Hence pd(G) = 3.
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6. Conclusion

Hive network, Honeycomb rhombic mesh, Honeycomb rectangular mesh net-
works have considerable advantage when compare to other networks in terms
of degree, diameter, total number of edges, costs, bisection width, etc. The
partition dimension of these networks have been studied in this paper.
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