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Abstract: We establish the estimations of best approximations of elements of a Banach

space by exponential type vectors associated with the positive operator. The corresponding

estimations are expressed in terms of quasi-norms of the approximation spaces as Bernstein-

Jackson-type inequalities. Such inequalities are applied to spectral approximations in the case

of the positive operator with the point spectrum.
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1. Introduction and preliminaries

One of the problems in the approximation theory is to characterize the approx-
imation of elements of Banach space by different classes of smooth vectors as-
sociated with a closed unbounded operator. A characterization of some classes
of infinitely differentiable vectors of a normal operator in a Hilbert space is
given in terms of the rate with which the best approximation of the vectors
by entire exponential type vectors tend to zero [1]. The spaces of exponential
type entire vectors associated with the closed unbounded linear operator in a
Banach space are defined in [2]. The direct and inverse theorems in the theory
of approximations are established in [3] and [4].
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The motivation of our work is to investigate a best approximation problem
by invariant subspaces of exponential type vectors of a positive operator in a
Banach space. Such problem for any closed unbounded linear operator has
been studied in [5] and [6]. In this paper, we define the Lorentz-type interpo-
lation spaces of exponential type vectors of positive operators and appropriate
approximation spaces. Interpolation properties of such spaces are explored
(Theorems 1, 2).

The inequalities estimating the minimal distance from a given element to
a subspace of exponential type vectors are established (Theorem 4). Such in-
equalities are extended to cases of best spectral approximations of the positive
operator in a Banach space (Theorem 5).

In a Banach complex space (X, ‖ · ‖) we consider a positive operator A with
the norm dense domain D

1(A). It means that (−∞, 0] ∈ ρ(A) and there exists
a number c > 0 such that ‖(A − λI)−1‖ ≤ c/(1 + |λ|) for all λ ∈ (−∞, 0]
([7], Section 1.14.1). Let Dk+1(A) = {x ∈ D

k(A) : Akx ∈ D(A)} and D
∞(A) =

⋂

k∈ND
k(A). We accept that A0 is the unit operator on X.

Recall the real (K-functional) and complex interpolation methods (for more
details see [7] and [8]). Let 0 < θ < 1 and 1 ≤ q ≤ ∞. For the quasi-
normed spaces X0 and X1 we define the interpolation space (X0,X1)θ,q =

{

x ∈
X0 +X1 : |x|(X0,X1)θ,q

< ∞
}

with the quasi-norm

|x|(X0,X1)θ,q
=

{

(∫∞

0

[

t−θK(t, x;X0,X1)
]q dt

t

)1/q
, 1 ≤ q < ∞,

sup0<t<∞ t−θK(t, x;X0,X1), q = ∞.

where K(t, x;X0,X1) = inf
x=x0+x1

(

|x0|X0 + t |x1|X1

)

, t > 0.

For any Banach spacesX0 andX1 we define the interpolation space [X0,X1]θ
=
{

x ∈ X0 +X1 : ∃ f(z) ∈ F(X0,X1), f(θ) = x
}

with the norm ‖x‖[X0,X1]θ =
inf

f(θ)=x
‖f(z)‖F(X0,X1), where inf takes on all functions f∈ F(X0,X1) such that

f(θ) = x. By F(X0,X1) we denote the space of (X0+X1)-valued functions with
the norm ‖f‖F(X0,X1) = max

(

sup
t

‖f(it)‖X0 , sup
t

‖f(1 + it)‖X1

)

, f(it) ∈ X0,

f(1 + it) ∈ X1 for all −∞ < t < ∞.

2. Lorentz-Type Spaces

Let m,k ∈ Z, m ≥ 0. It is well known ([7], Section 1.15.1) that for all α ∈ C

such that −m < Reα ≤ σ−m, 0 < σ < k and all x ∈
(

X,Dk(A)
)

σ/k,1
is defined
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an operator

Aα
σx =

Γ(k)

Γ(α+m)Γ(k −m− α)

∫ ∞

0
tα+m−1Ak−m(A+ tI)−kx dt.

The operator Aα
σ has a closure Aα in X which is independent of σ. The domain

D
α := D

α(A) of Aα we consider as a Banach space with the norm ‖x‖Dα =
‖Aαx‖, x ∈ D

α.
Let xk,ν := (A/ν)kx (ν > 0) and a sequence (x∗k,ν)

∞
k=0 consists of elements

xk,ν which are numbered in according to decrease of norms

‖x∗0,ν‖Dα ≥ ‖x∗1,ν‖Dα ≥ . . . ≥ ‖x∗k,ν‖Dα ≥ . . . .

For any 0 < ν < ∞ and 1 ≤ q, p ≤ ∞ we define the space Eν,α
q,p (A) =

{

x ∈ D
∞(A) : ‖x‖Eν,α

q,p (A) < ∞
}

, where

‖x‖Eν,α
q,p (A) =







(

∑

k∈N ‖x∗k−1,ν‖
p
Dαk

p

q
−1
)1/p

, 1 ≤ p < ∞,

supk∈N ‖x∗k−1,ν‖Dαk
1
q , p = ∞.

We can call the space Eν,α
q,p (A) endowed with the norm ‖x‖Eν,α

q,p (A) a Lorentz-

type space of exponential type entire vectors of A. If q = p then Eν,α
q,q (A) =

Eν,α
q (A) and Eν,α

1,1 (A) = Eν,α
1 (A), Eν,α

∞,∞(A) = Eν,α
∞ (A).

Applying [6, Theorem 2.1] for 1 < q < ∞ and 1 ≤ p ≤ ∞, we obtain

(Eν,α
1 (A), Eν,α

∞ (A))1−1/q,p = Eν,α
q,p (A), (1)

with equivalent norms. Moreover, the embedding Eν,α
q,p (A) ⊂ Eµ,α

q,p (A) with µ > ν
holds and every space Eν,α

q,p (A) is complete.

Theorem 1. Let 0 < ν < ∞, α ∈ C, 1 < q0, q1 < ∞, q0 6= q1, 1 ≤
p, p0, p1 ≤ ∞ and 0 < θ < 1. Then the following equality holds:

(

Eν,α
q0,p0(A), E

ν,α
q1,p1(A)

)

θ,p
= Eν,α

q,p (A),
1

q
=

1− θ

q0
+

θ

q1
. (2)

Proof. By Theorem 3.11.5 [8] and (1) we have

(Eν,α
q0,p0(A), E

ν,α
q1,p1(A))θ,p = (Eν,α

1 (A), Eν,α
∞ (A))λ,p = Eν,α

1/(1−λ),p(A), (3)

where q0 = 1/(1 − θ0), q1 = 1/(1 − θ1), λ = (1 − θ)θ0 + θθ1, 0 ≤ θ0 < θ1 ≤ 1.
Putting q = 1/(1 − λ) in (3), we obtain (2).
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For any 1 ≤ q ≤ ∞, α, β ∈ C and 0 ≤ Reα < Reβ < ∞ we define the

spaces E
ν,(α,β)
q,θ (A) =

{

x ∈ D
∞(A) : ‖x‖

E
ν,(α,β)
q,θ

(A)
< ∞

}

,

‖x‖
E
ν,(α,β)
q,θ

(A)
=







(

∑

k∈Z+
‖xk,ν‖

q
(Dα,Dβ)θ,q

)1/q
, 1 ≤ q < ∞,

supk∈Z+
‖xk,ν‖(Dα,Dβ)θ,q

, q = ∞.

and E
ν,[α,β]
q,θ (A) =

{

x ∈ D
∞(A) : ‖x‖

E
ν,[α,β]
q,θ

(A)
< ∞

}

,

‖x‖
E
ν,[α,β]
q,θ

(A)
=







(

∑

k∈Z+
‖xk,ν‖

q

[Dα,Dβ]
θ

)1/q
, 1 ≤ q < ∞,

supk∈Z+
‖xk,ν‖[Dα,Dβ]

θ

, q = ∞.

Theorem 2. Let 0 < θ < 1, α, β ∈ C, 0 ≤ Reα < Re β < ∞ and

1 ≤ q, q0, q1 ≤ ∞. If 0 < ν0, ν1 < ∞, ν0 6= ν1 then for ν = ν1−θ
0 νθ1 the following

equality holds:

(

Eν0,α
q0 (A), Eν1,α

q1 (A)
)

θ,q
= Eν,α

q (A). (4)

For 1 ≤ q0, q1 < ∞ such that 1/q = (1−θ)/q0+θ/q1 the following equalities

hold:

(

Eν,α
q0 (A), Eν,β

q1 (A)
)

θ,q
= E

ν,(α,β)
q,θ (A). (5)

[

Eν0,α
q0 (A), Eν1,α

q1 (A)
]

θ
= Eν,α

q (A), (6)

[

Eν,α
q0 (A), Eν,β

q1 (A)
]

θ
= E

ν,[α,β]
q,θ (A). (7)

Proof. The space Eν,α
q (A) is isometric to the space of sequences lν,αq =

{

x̄ :=
(Akx)∞k=0 : x ∈ Eν,α

q (A)
}

with the norm ‖x̄‖lν,αq
= ‖x‖Eν,α

q (A). Let us replace

ν = 2−σ in which the condition ν = ν1−θ
0 νθ1 turns into equality σ = (1− θ)σ0 +

θσ1. Moreover, we have K(t, x̄, lν0,α∞ , lν1,α∞ ) ∼ supk∈Z+
min(2kσ0 , t2kσ1)‖Akx‖Dα

for q0 = q1 = ∞ and K(t, x̄, lν0,α1 , lν1,α1 ) ∼
∑

k∈Nmin(2kσ0 , t2kσ1)‖Akx‖Dα for
q0 = q1 = 1.

For x̄ ∈ (lν0,α∞ , lν1,α∞ )θ,q and σ0 > σ1 we obtain

‖x̄‖q
(l
ν0,α
∞ ,l

ν1,α
∞ )θ,q

=

∫ ∞

0

[

t−θK(t, x̄; lν0,α∞ , lν1,α∞ )
]q dt

t
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∼
∑

j∈Z

2−θqj(σ0−σ1) sup
k

[

min(2kσ0 , 2j(σ0−σ1)+kσ1)‖Akx‖Dα

]q

≥
∑

j∈Z

2qj[σ0(1−θ)+σ1θ]‖Ajx‖q
Dα = c‖x̄‖q

lν,αq
,

which shows the embedding

(lν0,α∞ , lν1,α∞ )θ,q ⊂ lν,αq . (8)

Using the Hölder’s inequality, for x̄ ∈ lν,αq we have

‖x̄‖q
(lν0,α1 , l

ν1,α
1 )

θ,q

=

∫ ∞

0

[

t−θK(t, x̄; lν0,α1 , lν1,α1 )
]q dt

t

∼
∑

j∈Z

2−θqj(σ0−σ1)
[

∑

k∈Z+

min(2kσ0 , 2j(σ0−σ1)+kσ1)‖Akx‖Dα

]q

≤ c′
∑

j∈Z

2qj(σ−σ0)
(

∑

k≤j

2q
′k(σ0−µ0)

)q/q′(
∑

k≤j

2qkµ0‖Akx‖q
Dα

)

+c′
∑

j∈Z

2qj(σ−σ1)
(

∑

k>j

2q
′k(σ1−µ1)

)q/q′(
∑

k>j

2qkµ1‖Akx‖q
Dα

)

≤ c′′
(

∑

k∈Z

2qkµ0‖Akx‖q
Dα

∑

j≥k

2qj(σ−µ0)

+
∑

k∈Z

2qkµ1‖Akx‖q
Dα

∑

j<k

2qj(σ−µ1)
)

≤ c
∑

k∈Z

2kσq‖Akx‖q
Dα = c‖x̄‖q

lν,αq
.

It follows that
lν,αq ⊂ (lν0,α1 , lν1,α1 )θ,q . (9)

From (8) and (9) we obtain

lν,αq ⊂ (lν0,α1 , lν1,α1 )θ,q ⊂
(

lν0,αq0 , lν1,αq1

)

θ,q
⊂ (lν0,α∞ , lν1,α∞ )θ,q ⊂ lν,αq .

Thus we have the required equality (4).
The space Eν,α

q (A) is isometric embedding in the space lαq =
{

(ξk)
∞
k=0 : ξk ∈

D
α, ‖(ξk)‖lαq =

(
∑

k∈Z+
‖ξk‖

q
Dα

)1/q
< ∞

}

. Denote I : Eν,α
q (A) ∋ x →֒ (ξk =

xk,ν) ∈ lαq . For x ∈
(

lαq0 , l
β
q1

)

θ,q
we have

K(t,I(x), lαq0 , l
β
q1) ≤ inf

x=x0+x1

(

‖I(x0)‖lαq0
+ t‖I(x1)‖lβq1

)

≤ ‖I‖Eν,α
q0

(A)→lαq0
K

( t‖I‖
E
ν,β
q1

(A)→lβq1

‖I‖Eν,α
q0

(A)→lαq0

, x, Eν,α
q0 (A), Eν,β

q1 (A)

)

.
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Through a substitution τ = t‖I‖
E
ν,β
q1

(A)→lβq1
‖I‖−1

E
ν,α
q0

(A)→lαq0
we obtain

‖I(x)‖(
lαq0 , l

β
q1

)

θ,q

≤ ‖I‖Eν,α
q0

(A)→lαq0

‖I‖θ
E
ν,β
q1

(A)→lβq1

‖I‖θ
E
ν,α
q0

(A)→lαq0

‖x‖(
E
ν,α
q0

(A), Eν,β
q1

(A)
)

θ,q

.

Applying the similar estimate for the inverse mapping I−1 defined on the
set of values of I, we obtain

‖I(x)‖(
lαq0 , l

β
q1

)

θ,q

= ‖x‖(
E
ν,α
q0

(A), Eν,β
q1

(A)
)

θ,q

, x ∈
(

Eν,α
q0 (A), Eν,β

q1 (A)
)

θ,q
.

Every space E
ν,(α,β)
q,θ (A) is isometric to the space of sequences l

ν,(α,β)
q,θ =

{

x̄ :=

(Akx)∞k=0 : x ∈ E
ν,(α,β)
q,θ (A)

}

endowed with the norm ‖x̄‖
l
ν,(α,β)
q,θ

= ‖x‖
E
ν,(α,β)
q,θ

(A)
.

Applying [7, Theorem 1.18.1], we obtain
(

lαq0 , l
β
q1

)

θ,q
= l

(α,β)
q,θ , where l

(α,β)
q,θ =

{

(ξk)
∞
k=0 : ξk ∈ (Dα,Dβ)θ,q, ‖(ξk)‖

q

l
(α,β)
q,θ

=
∑

k∈Z+
‖ξk‖

q
(Dα ,Dβ)θ,q

< ∞
}

and

1/q = (1− θ)/q0 + θ/q1. It follows that (5) is true.
The equality (6) follows immediately from (4) and Theorem 4.7.2 [8].

Let x ∈ [Eν,α
q0 (A), Eν,β

q1 (A)]θ, f(z)∈ F(Eν,α
q0 (A), Eν,β

q1 (A)) and f(θ) = x. Then

g(z) =

(

‖I‖Eν,α
q0

(A)→lαq0

‖I‖
E
ν,β
q1

(A)→lβq1

)z−θ

If(z) ∈ F(lαq0 , l
β
q1), g(θ) = Ix.

It follows that

‖g(z)‖
F(lαq0 ,l

β
q1

)
≤ ‖I‖

(1−θ)

E
ν,α
q0

(A)→lαq0
‖I‖θ

E
ν,β
q1

(A)→lβq1
‖f(z)‖

F(Eν,α
q0

(A),Eν,β
q1

(A))
,

‖Ix‖
[lαq0 ,l

β
q1

]θ
≤ ‖I‖

(1−θ)

E
ν,α
q0

(A)→lαq0
‖I‖θ

E
ν,β
q1

(A)→lβq1
‖x‖

[Eν,α
q0

(A),Eν,β
q1

(A)]θ
.

Applying the similar estimate for the inverse mapping I−1, we obtain

‖I(x)‖
[lαq0 ,l

β
q1

]θ
= ‖x‖

[Eν,α
q0

(A),Eν,β
q1

(A)]θ
for all x ∈ [Eν,α

q0 (A), Eν,β
q1 (A)]θ.

The space E
ν,[α,β]
q,θ (A) is isometric to the space of sequences l

ν,[α,β]
q,θ =

{

x̄ :=

(Akx)∞k=0 : x ∈ E
ν,[α,β]
q,θ (A)

}

with the norm ‖x̄‖
l
ν,[α,β]
q,θ

= ‖x‖
E
ν,[α,β]
q,θ

(A)
.

By Theorem 1.18.1 [7] we have
[

lαq0 , l
β
q1

]

θ
= l

[α,β]
q,θ , where l

[α,β]
q,θ =

{

(ξk)
∞
k=0 :

ξk ∈ [Dα,Dβ]θ, ‖(ξk)‖
q

l
[α,β]
q,θ

=
∑

k∈Z+
‖ξk‖

q
[Dα,Dβ ]θ

< ∞
}

and 1/q = (1− θ)/q0 +

θ/q1. It follows that (7) is true.
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3. Best Approximations

On the linear manifold Eα
q,p(A) =

⋃

ν>0 E
ν,α
q,p (A) we define the quasi-norm |x|Eα

q,p(A)

= ‖x‖ + inf {ν > 0: x ∈ Eν,α
q,p (A)} . Given a pair of numbers {0 < s < ∞, 0 <

τ ≤ ∞} or {0 ≤ s < ∞, τ = ∞} we consider the scale of approximation spaces
Bs,α
q,p,τ(A) = {x ∈ X : |x|Bs,α

q,p,τ (A) < ∞},

|x|Bs,α
q,p,τ (A) =

{

(∫∞

0

[

tαEα
q,p(t, x)

]τ dt
t

)1/τ
, 0 < τ < ∞,

supt>0 t
αEα

q,p(t, x), τ = ∞,

where Eα
q,p(t, x) = inf{‖x− x0‖ : x0 ∈ Eα

q,p(A), |x
0|Eα

q,p(A) ≤ t}, x ∈ X.

Let [Bs,α
q,p,τ (A)]

θ
be the space Bs,α

q,p,τ (A) endowed with the quasi-norm |x|θ
B
s,α
q,p,τ (A)

,

x ∈ Bs,α
q,p,τ (A). Applying Theorem 7.1.7 [8], we obtain

[

Bs,α
q,p,τ (A)

]θ
=
(

Eα
q,p(A),X

)

θ,g
, θ = 1/(s + 1), τ = gθ, (10)

with equivalent quasi-norms.

Lemma 3. Every space Bs,α
q,p,τ(A) is complete.

Proof. From the inequality ‖x‖ ≤ |x|Eα
q,p(A), x ∈ Eα

q,p(A) it follows that

‖x‖ = infx=x0+x1

(

|x0|Eα
q,p(A) + ‖x1‖

)

with x0 ∈ Eα
q,p(A) and x1 ∈ X. Thus, ev-

ery series
∑

n∈N xn with xn ∈ (Eα
q,p(A),X)θ,g such that

∑

n∈N |xn|(Eα
q,p(A),X)θ,g <

∞ is convergent to x ∈ X. Using the inequality
∣

∣

∑

n∈N xn
∣

∣

(Eα
q,p(A),X)θ,g

≤
∑

n∈N |xn|(Eα
q,p(A),X)θ,g we obtain x ∈ (Eα

q,p(A),X)θ,g. So, (Eα
q,p(A),X)θ,g is com-

plete. The isomorphism (10) implies that the space Bs,α
q,p,τ(A)) is complete.

Theorem 4. There are constants c1 and c2 such that the following in-

equalities hold:

|x|Bs,α
q,p,τ (A) ≤ c1 |x|

s
Eα
q,p(A) ‖x‖, x ∈ Eα

q,p(A), (11)

Eα
q,p(t, x) ≤ c2 t

−s |x|Bs,α
q,p,τ (A), x ∈ Bs,α

q,p,τ(A). (12)

Proof. Applying [8, Theorem 3.11.4(b)], for some constant c(θ, g) we obtain

|x|(Eα
q,p(A),X)θ,g ≤ c |x|1−θ

Eα
q,p(A)

‖x‖θ, x ∈ Eα
q,p(A).

This inequality and the isomorphism (10) imply that there is a constant c1(s, τ)
such that the inequality (11) is true.
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By [8, Theorem 3.11.4(a)] for some constant c(θ, g) we have

K(t, x; Eα
q,p(A),X) ≤ c tθ|x|(Eα

q,p(A),X)
θ,g

, x ∈
(

Eα
q,p(A),X

)

θ,g
.

Using (10), we have the inequality

K(t, x; Eα
q,p(A),X) ≤ c0 t

θ|x|θ
B
s,α
q,p,τ (A), x ∈ Bs,α

q,p,τ (A).

with a constant c0(s, τ).

Let K∞(t, x; Eα
q,p(A),X) = inf

x=x0+x1
max{|x0|Eα

q,p(A), t‖x
1‖}. The inequality

K∞(t, x; Eα
q,p(A),X) ≤ K(t, x; Eα

q,p(A),X) yields

t−θK∞(t, x; Eα
q,p(A),X) ≤ c0|x|

θ
B
s,α
q,p,τ (A), x ∈ Bs,α

q,p,τ (A). (13)

By Lemma 7.1.2 [8] for every t > 0 there exists v > 0 such that

K∞(t, x; Eα
q,p(A),X) = v, lim

µ↓v
Eα

q,p(µ, x) = Eα
q,p(v + 0, x) ≤ v/t.

As a result, v1−θ[Eα
q,p(v, x)]

θ ≤ t−θK∞(t, x; Eα
q,p(A),X). Using (13), we have

v1−θ[Eα
q,p(v, x)]

θ ≤ c0|x|
θ
B
s,α
q,p,τ (A).

If s = (1− θ)/θ then vsEα
q,p(v, x) ≤ c

1/θ
0 |x|Bs,α

q,p,τ (A) for all x ∈ Bs,α
q,p,τ(A). Taking

c2 = c
1/θ
0 , we obtain the required inequality (12).

Now we consider a spectral approximation problem for the positive operator
with the point spectrum. We say that A is the operator with the point spectrum
if σ(A) consists of isolated eigenvalues λj (j ∈ N) with a unique boundary point
at infinity. Moreover, every root subspace Rλj

(A) corresponding to λj ∈ σ(A)
is finite dimensional.

For m,n ∈ N we denote by Rν
m,n(A) the complex linear span in X of all

{Rλj
(A) : |λj | < min(ν1/(m+1), ν1/(n+1))}. Let Hλj

(A) = {x ∈ D
∞(A) :

(λjI − A)x = 0} be a subspace of eigenvectors corresponding to λj ∈ σ(A)
and Hν

m,n(A) be a complex linear span of all Hλj
(A) such that

|λj | = min(ν1/(m+1), ν1/(n+1)),

λj ∈ σ(A).
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Theorem 5. Let A be a positive operator with the point spectrum, m,n ∈
N, α = m(1− θ) + nθ and 0 < θ < 1. Then the following inequalities hold:

inf
{

‖x− x0‖ : x0 ∈ Rν
m,n(A)

}

≤ c ν−s |x|Bs,α
q,q,τ (A), (14)

inf
{

‖x− x0‖ : x0 ∈ (Rν
m,n(A),Q

ν
m,n(A))1−1/q,p

}

≤ cν−s |x|Bs,α
q,p,τ (A), (15)

where Qν
m,n(A) = Rν

m,n(A) ⊕ Hν
m,n(A) and ‖ · ‖Rν

m,n(A) := ‖ · ‖Eν,α
1 (A), ‖ ·

‖Qν
m,n(A) := ‖ · ‖Eν,α

∞ (A).

Proof. If |x0|Eα
q,p(A) = r(x0) + ‖x0‖ ≤ v, then r(x0) ≤ v − ‖x0‖, where

r(x0) = inf{ν > 0: x0 ∈ Eν,α
q,p (A)}. So, x0 ∈ Eν,α

q,p (A) for all ν > 0 such that
r(x0) ≤ ν ≤ v − ‖x0‖. Since Eν,α

q,p (A) ⊂ Ev,α
q,p (A) that x0 ∈ Ev,α

q,p (A). Hence, the
inequality

inf{‖x− x0‖ : x0 ∈ Ev,α
q,p (A)} ≤ Eα

q,p(v, x), x ∈ X, v > 0 (16)

holds. By Theorem 2.2 [9] for any 1 ≤ q < ∞ and k ∈ Z+ we have

Eν,k
q (A) = span

{

Rλj
(A) : |λj |

k+1 < ν
}

. (17)

Applying (17), (7) and Theorem 1.15.3 [7], we obtain

Eν,α
q (A) = E

ν,[m,n]
q,θ (A) =

[

Eν,m
q0 (A), Eν,n

q1 (A)
]

θ

= Eν,m
q0 (A) ∩ Eν,n

q1 (A) = Rν
m,n(A) (18)

with α = m(1− θ) + nθ. Using (18), (16) and (12), we obtain (14).
Now let us prove the equality

Eν,α
∞ (A) = Qν

m,n(A). (19)

Using [10, Lemma 1], we have

Eν,α
∞ (A) ⊂ span{Rλj

(A) : |λj| ≤ min(ν1/(m+1), ν1/(n+1))}.

Then it is sufficient to prove the equality Hλj
(A) = Eν,0

∞ (A)∩Rλj
(A) for indices

j with |λj | = ν. Assume that this equality is not true. Then there exist root

vectors x0, . . . , xr corresponding to λj such that |λj | = ν and xr ∈ Eν,0
∞ (A),

r ≥ 1. From the equality

Akxr =
r
∑

i=0

(

k

i

)

λk−i
j xr−i, k ≥ r



804 M. Dmytryshyn

it follows that

lim
k→∞

‖Akxr‖
(k
r

)

νk
= ν−r‖x0‖.

Since x0 6= 0 then ν−r‖x0‖ 6= 0 and xr /∈ Eν,0
∞ (A). So, the equality Hλj

(A) =

Eν,0
∞ (A) ∩Rλj

(A) for j : |λj | = ν holds. Thus, the equality (19) holds as well.
By (1), (18) and (19) we have

(

Rν
m,n(A),Q

ν
m,n(A)

)

1−1/q,p
= Eν,α

q,p (A). (20)

Using (20), (16) and (12), we obtain (15).
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