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Abstract: We establish the estimations of best approximations of elements of a Banach
space by exponential type vectors associated with the positive operator. The corresponding
estimations are expressed in terms of quasi-norms of the approximation spaces as Bernstein-
Jackson-type inequalities. Such inequalities are applied to spectral approximations in the case

of the positive operator with the point spectrum.
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1. Introduction and preliminaries

One of the problems in the approximation theory is to characterize the approx-
imation of elements of Banach space by different classes of smooth vectors as-
sociated with a closed unbounded operator. A characterization of some classes
of infinitely differentiable vectors of a normal operator in a Hilbert space is
given in terms of the rate with which the best approximation of the vectors
by entire exponential type vectors tend to zero [1]. The spaces of exponential
type entire vectors associated with the closed unbounded linear operator in a
Banach space are defined in [2]. The direct and inverse theorems in the theory
of approximations are established in [3] and [4].
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The motivation of our work is to investigate a best approximation problem
by invariant subspaces of exponential type vectors of a positive operator in a
Banach space. Such problem for any closed unbounded linear operator has
been studied in [5] and [6]. In this paper, we define the Lorentz-type interpo-
lation spaces of exponential type vectors of positive operators and appropriate
approximation spaces. Interpolation properties of such spaces are explored
(Theorems 1, 2).

The inequalities estimating the minimal distance from a given element to
a subspace of exponential type vectors are established (Theorem 4). Such in-
equalities are extended to cases of best spectral approximations of the positive
operator in a Banach space (Theorem 5).

In a Banach complex space (X, || - ||) we consider a positive operator A with
the norm dense domain D!(A). It means that (—o00,0] € p(A) and there exists
a number ¢ > 0 such that ||(A — A)7Y| < ¢/(1+])|) for all A € (—o0,0]
([7], Section 1.14.1). Let D**'(A) = {x € D¥(A): Az € D(A)} and D®(A) =
MNien DF(A4). We accept that A° is the unit operator on X.

Recall the real (K-functional) and complex interpolation methods (for more
details see [7] and [8]). Let 0 < § < 1 and 1 < ¢ < oo. For the quasi-
normed spaces Xo and X; we define the interpolation space (X, X1)p,q = {:1: €
Xo+ X1 |7|(x0,x1) Yo < oo} with the quasi-norm

0 qdt\1/a
2] (x0,x1), . = (oo [OK (2 X0, X)) 7, 1< g < oo,
o SUPg<t<oo I K(t,x;XO,Xl), q = o0

where K (t,2; X0, X1) = inf (]a%x, +t]z'|x,), t > 0.
=41

For any Banach spaces X and X we define the interpolation space [Xg, X1]g
= {2z € Xo+ X1: 3 f(2) € F(Xo,X1), f(#) = x} with the norm ||z]|[x, x,],
ienf £ (2)l| 7(x0,x,)> Where inf takes on all functions f€ F(Xo, X1) such that
=z
f(0) = z. By F(Xo, X1) we denote the space of (Xo+ X1)-valued functions with
the ormn [ Lz(xo,x) = max (sup ) g, up 10+ i0)1x,).fGt) € o

f(1+idt) € X; for all —oco < t < o0.

2. Lorentz-Type Spaces

Let m,k € Z, m > 0. It is well known ([7], Section 1.15.1) that for all & € C

such that —m < Rea <o—m, 0 <o < kandall z € (X, Dk(A))U/k | is defined
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an operator

A%y = F(k) /oo taerflAkfm(A + tI)ikx dt
7 Ta+m)T(k—m—a) J ’
The operator AS has a closure A% in X which is independent of 0. The domain
D% := D%(A) of A* we consider as a Banach space with the norm |z|pe =
|A%||, x € D“.
Let xg, == (A/v)kz (v > 0) and a sequence (2}, )7 consists of elements
Ty, which are numbered in according to decrease of norms

26, lpe = (|27, lpa = - = [z, llpe = ...

For any 0 < v < oo and 1 < ¢,p < oo we define the space Egp (A) =
{x € D>(A4): [zllgraia) < oo} , where

P_q 1/p
(ZkEN ”xzfl,u”pak‘q ) ) 1< p < o0,

[zllezeay = : .
SUPkeN ||xk717y\|Dakq, b = o0.

We can call the space £} (A) endowed with the norm ||z[|gr.a 4 a Lorentz-
type space of exponential type entire vectors of A. If ¢ = p then &£ 7'(A) =
EF(A) and E/F(A) = E°(A), EL5(A) = E4°(A).

Applying [6, Theorem 2.1] for 1 < ¢ < oo and 1 < p < oo, we obtain

(E(A), EL(A))1_1yq, = €55 (A), (1)
with equivalent norms. Moreover, the embedding £, (A) C &Ly (A) with p > v

holds and every space &, (A) is complete.

Theorem 1. Let 0 < v < o0, a € C, 1 < qo,q1 < 00, qo # q1, 1 <
p,po,p1 < 00 and 0 < 0 < 1. Then the following equality holds:

1 1-60 ¢
= +—. 2)

q q0 q1

(a0 (A): €551 (A)) g, = €7 (A),

q0.p0 \“1)2 Cqup1
Proof. By Theorem 3.11.5 [8] and (1) we have
(S0 (A), €50 (Do = (€1 (A), E28(ADap = E8 ) (A), ()

where gy = 1/(1 —090), q1 = 1/(1 —091), A= (1 —9)90 +660:,0<6,< 6 <1.
Putting ¢ = 1/(1 — ) in (3), we obtain (2). O
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For any 1 < ¢ < 00, a,8 € C and 0 < Rea < Ref < oo we define the
spaces 5;’9(0"6)(14) = {x € D®(A): ”ngu,e(a,ﬁ)(A) < oo} ,
q,

1/q
) (S Ionallpepsy, ) 1S a< o0,

Hxﬂgv,(aﬁ) A
e (A) SUPgez, ka’””(Da,DB)g’q7 q = oo.

Vv[avﬁ] — o0 .
and €y (A) = {x € D*(A): ||x\|g;,:(£a,m(A) < oo}7

/g
(Zkez, lanalln oy ) 1< a <00,
’ 0

SUPrez, ||xk,u||[Da7Dﬁ]9a q = 0.

||x‘|g;’:£a,5](14)

Theorem 2. Let 0 < 0 < 1, o, € C, 0 < Rea < Ref8 < oo and
1<q,q0, 1 < 00. If0 < vy, vy < o0, vy # vy then for v = z/éfeyf the following

equality holds:

(& (A), €5 (A)), , = €7 (A)- (4)

0,q

For 1 < qy,q1 < oo such that 1/q = (1—0)/qo+0/q:1 the following equalities
hold:

(En(A), €4°(A),,, = Eng™P (), (5)
(€50 (A), £ (A)], = €7 (A), (6)
(), ggpa) = eri ). 7)

Proof. The space £;“(A) is isometric to the space of sequences I = {Z :=
k. \oo . v,x . _ .

(Afz)e « x € E/Y(A)} with the norm [Z[le = [lz[lgz(ay- Let us replace
v = 277 in which the condition v = v ~1¢ turns into equality o = (1 — 0)og +
fo1. Moreover, we have K (t, 7,150, 1o5"") ~ suDgez, min(2+70, $2k71)|| AF || pa
for go = q1 = oo and K(t, 2,17, I7"%) ~ Yoy min(2~o0, ¢2k91)|| AFz||pa for
g =q =1L

For z € (I3, 156%)g,, and 0g > o1 we obtain

lz]|% _ [ [t 0K (t, 75120 l”l’a)]qﬂ
(GRS TR Tree oo t
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N Z 9—0gj(0c0—01) sup [min(QkUO, 2j(aofa1)+k01)”Akx”Da] q

jez k
> 30 =0t walt, o],
JEZ
which shows the embedding
(150 1) g, C 1™ (8)

Using the Holder’s inequality, for z € l;"® we have

—nq o > _GK __luo,a lul,a (1@
20 e gy = [ (UK EE 5]
1 271 0,q 0

- Z 9—0qj(c0—01) [ Z min(QkUO, 23'(00*01)“901)”AkaDa]q

JEL keZy
< Z oai(0—00) ( Z 2q'k(00—ﬂ0))‘1/q/ ( Z oako HAkaq a)
JEZ k<j k<j
1! S 2ulomon) (37 gu Morm)) 1/ (5 guknn | gk 0 )
JET k>j k>j
< C//(Z 9akho ||AkCU||qDa Z 94j(o—po0)
keZ =k
+ 2| A Y 2wy < o7 2k AR, = 7 e
kEZ i<k kez
It follows that
e (10, 1), )

From (8) and (9) we obtain

), C (1, 1), C (1), € 1
Thus we have the required equality (4).
The space £;°*(A) is isometric embedding in the space I3 = {(&)72 : & €

D, [[(&k) e = (ZkeZ+ kaan)l/q < oo}. Denote Z: ES%(A) 2 z <= (& =

Tg,) € lg. For z € (lg‘o, l;[;l)e , we have

K(tZ(@), I, 1) < it ([[Z(o)lig, + tIZ(x1)l,z )

A ey -
’7q0 ’Yq1

< Il o, K  E AP ).

I Zllgzer ay—sig:
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Through a substitution 7 = tHI|]5V 8 A)=sif, HIHEB,Q(A)MQ we obtain
a0 a0
IZ11%., 5
EqP (A)—l
I(x < ||Z|] e —ql e
I )H<l30’l§1>e,q = ngo o HI”e”a A)-lg ke ”< qlﬁ(A)>e,q

Applying the similar estimate for the inverse mapping Z~' defined on the
set of values of Z, we obtain

L R - O} sq”fm))@’q.

0,q 0,q

Every space 5 V’(a’ﬁ ) (A) is isometric to the space of sequences l {x

( 8)
(AFy )T € 5q9 (A)} endowed with the norm HleZ,éa,@) HxH‘gu (@.6) 4)"

Applying [7, Theorem 1.18.1], we obtain (l;‘o,lgl)eq = l((laéﬁ)’ where l(a B _

(@50 + & € (0" D)o 1oy = Tez, Willpn o, < ) and
1/g=(1-80)/q0+0/q. 1t follows that (5) is true.

The equality (6) follows immediately from (4) and Theorem 4.7.2 [8].
Let x € [£5%(A), &7 (Ao, f(2)€ F(E™(A), €537 (A)) and f(0) = 2. Then

IZ) e ay e \ 777
g(z) = (— W2l ) Zf(z) € FU,18), g(0) = Ta.
[

It follows that

9 r 12 < NSy g Wi 1) ey ey

[/
Tl 121, < IS0yt 108 - 1 oy

Applying the similar estimate for the inverse mapping Z~!, we obtain

IZ@)lg 151, = Il e ey, for all o € [E5(A), €% (Ao

’Yq

The space 5”’[a’ }(A) is isometric to the space of sequences l;’éa’ﬁ (. {z =

(AFz)e o€ gql/:e[aﬂ] )} with the norm [|Z|. ol ”ngu,éa,ﬂ](A).
q,

By Theorem 1.18.1 [7] we have [12,14], = zg“ém, where %7 = {(€1)32, -

6 € D% D). (€6) 1 = Sker, 60/ 00y, < o0} and 1/a = (1 0)/a0 +
‘17
0/q:1. 1t follows that (7) is true. O
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3. Best Approximations

On the linear manifold £¢,(A) = U,~ £q)p (4) we define the quasi-norm |z|ga ()
= ||z|| +inf {vr > 0: z € &, (A)}. Given a pair of numbers {0 < s < 00, 0 <

T < o0} or {0 < s < oo, T =00} we consider the scale of approximation spaces

Bypr(A) ={z € X |2gsa_(a) < o0},

(52 [tBe, (t,2)] " 4) 7, 0< 7 < o0,
gy (a) =
9P,T
SUpy~q t* qup( ,x), T = 00,
where B2 (t,2) = inf{[jz — 2°|: 2" € £2,,(A), ]xolgﬁp(A) <t} zeX
Let [B55+(A)]? be the space Bio 1 (A) endowed with the quasi-norm
x € Byp+(A). Applying Theorem 7.1.7 [8], we obtain

6
’x‘BSZg,T(A)’

Byo ()] = (£6,(A),X), . 0=1/(s+1), 7= g0, (10)

with equivalent quasi-norms.

Lemma 3. Every space Bgp.-(A) is complete.

Proof. From the inequality [lz]| < |z[ga (1), ® € £7)(A) it follows that
|lz|| = inf,_ 0 1 (\xolggp(A) + [|z!]]) with 20 € £2,(A) and 2! € X. Thus, ev-
ery series ) oy Tn With z, € (€7,(A), X)g 4 such that > nen [Tnlea, (4),%)5, <
oo is convergent to x € X. Using the inequality |Zn€N x”‘(igp(A),X)g,g <
>_nen | TnliEa, (4),x),, We obtain z € (E8,(A), X)p,q. So, (£3,(A),X)g,q s com-

plete. The isomorphism (10) implies that the space By -(A)) is complete. O

Theorem 4. There are constants ¢; and ¢y such that the following in-
equalities hold:

gz ) <elzlen ayllzll, 2 € &p(A), (11)
B2 (ta) <ot~ lalpe oy @€ BLS(A). (12)

Proof. Applying [8, Theorem 3.11.4(b)], for some constant ¢(f, g) we obtain
Zl(ga, (1), %)0, < Cmga ) HxH9, r e &, (A).

This inequality and the isomorphism (10) imply that there is a constant ¢ (s, 7)
such that the inequality (11) is true.
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By [8, Theorem 3.11.4(a)] for some constant ¢(f, g) we have

K(t,z;E% (A),X) < ctelx\(gap(m’x)gg, z € (E5(4),X) .-

1Cap
Using (10), we have the inequality

K (t,2;875(A), X) < cot’[alfen 4, @ € By (A).

with a constant co(s, 7).
Let Keo(t,;E5,(A),X) = inf max{|z°|ge (4),t[|z']|}. The inequality
:E*QCO-f—:El 9P

’7q,p
Koo(t,z;EF,(A), X) < K(t,2;E3,(A), X) yields
O Koo (t, 25 €5, (A), X) < c0|:c|§g§:gﬁ(14), x € B (A). (13)

By Lemma 7.1.2 [8] for every ¢ > 0 there exists v > 0 such that

Koot 5, (4),X) = 0. lim B3, (1.2) = Eg(v-+0,2) < v/t

As a result, vlfe[Eg‘,p(v,x)]@ <t K (t, x; Egp(A),X). Using (13), we have

—0 0 0
'U1 [E;p(v,x)] S CO’ZE‘BS:&T(A).

If s=(1-0)/0 then v*E¢ (v,z) < C(l)/9|x|52’?T(A) for all z € Byp.-(A). Taking

/ % we obtain the required inequality (12). O

Cy = C(l)

Now we consider a spectral approximation problem for the positive operator
with the point spectrum. We say that A is the operator with the point spectrum
if 0(A) consists of isolated eigenvalues \; (j € N) with a unique boundary point
at infinity. Moreover, every root subspace R, (A) corresponding to \; € o(A)
is finite dimensional.

For m,n € N we denote by R}, ,(A) the complex linear span in X of all
{Rx;(A) = [N] < min(pY/ (7D /D) Let Hy (A) = {z € D*®(4) :
(AjI — A)x = 0} be a subspace of eigenvectors corresponding to \; € o(A)
and Hj, ,(A) be a complex linear span of all H;(A) such that

M| = min(p!/ ) /D),

)\j S U(A)
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Theorem 5. Let A be a positive operator with the point spectrum, m,n €
N, a=m(1l —0)+nb and 0 < @ < 1. Then the following inequalities hold:

inf {||z — 2°(|: 2° € Ry n(A)} <cv™ |Z|gsa (a)s (14)

inf {HQZ - xOH : xO € (,R’Zn,n(A)v QZn,n(A))l—l/q,p} S cv?® ‘x’B;jg,T(A)a (15)
where QO (A) = Ry, .(A) ® 1y, ,(A) and [ - |lry, a) = | - llereay, |-
oy, .ca) = Il - lleze(a)-

Proof. If |.’E0|gap(A) = r(2%) + ||2°|| < v, then r(2°) < v — ||2°]|, where
r(x%) = inf{r > 0: 20 € &5 (A)}. So, 2V € &5 (A) for all v > 0 such that
r(z%) < v <wv—|z%. Since & (A) C Egp (A) that 20 € £ (A). Hence, the
inequality

inf{||z — 2°||: 2° € Egp (A} < B (v,), z€ X, v>0 (16)
holds. By Theorem 2.2 [9] for any 1 < ¢ < co and k € Z, we have
€% (A) = span {RA], (A) N [F < y} . (17)
Applying (17), (7) and Theorem 1.15.3 [7], we obtain

gre(A) = EnmA) = [gnm(A), E5MA)],
= Sgém(A)mgg{”(A) :RZW(A) (18)

with o = m(1 — 0) + nf. Using (18), (16) and (12), we obtain (14).
Now let us prove the equality

ELM(A) = Q5 n(4). (19)
Using [10, Lemma 1], we have
ELM(A) C span{Ry, (A) : |\ < min(p!/ (D /()

Then it is sufficient to prove the equality Hy,(A) = EL(A)NR A, (A) for indices
J with [Aj] = v. Assume that this equality is not true. Then there exist root
vectors g, ...,x, corresponding to \; such that [\;| = v and z, € exl(A),
r > 1. From the equality

T k '
k _ k—1 )
Az, = g <i>)\j Tp_i, K>
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it follows that
lim M =v " ||zl
koo ()vh
Since o # 0 then v "||zo|| # 0 and z, ¢ E2°(A). So, the equality Hy, (A) =
(AN R, (A) for j : || = v holds. Thus, the equality (19) holds as well.
By (1), (18) and (19) we have

(R A), Qo A)) 0 = ELS A, (20)
Using (20), (16) and (12), we obtain (15). O
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