IJPAM: Volume 112, No. 4 (2017)

Title

$L$-CLOSURE OPERATORS AND
$L$-FUZZY PRE-PROXIMITIES

Authors

Jung Mi Ko$^1$, Ju-Mok Oh$^2$
$^{1,2}$Department of Mathematics
Gangneung-Wonju University
Gangneung, Gangwondo 210-702, KOREA

Abstract

In this paper, we introduce the notions of $L$-fuzzy pre-proximities and $L$-interior operators in complete residuated lattices. We obtain the $L$-fuzzy pre-proximities induced by $L$-closure operators. Moreover, we investigate the relations between the $L$-fuzzy pre-proximities and $L$-closure operators. We give their examples.

History

Received: July 20, 2016
Revised: February 8, 2017
Published: February 19, 2017

AMS Classification, Key Words

AMS Subject Classification: 03E72, 06A15, 06F07, 54A05
Key Words and Phrases: complete residuated lattice, $L$-closure space, $L$-fuzzy pre-proximity space, $L$-topologies

Download Section

Download paper from here.
You will need Adobe Acrobat reader. For more information and free download of the reader, see the Adobe Acrobat website.

Bibliography

1
G. Artico, R. Moresco, Fuzzy proximities according with Lowen fuzzy uniformities, Fuzzy Sets and Systems, 21 (1987), 85-98.

2
R. Badard, A.A. Ramadan, A.S. Mashhour, Smooth preuniform and preproximity spaces, Fuzzy Sets and Systems, 59 (1993), 95-107.

3
R. Bělohlávek, Fuzzy Relational Systems, Kluwer Academic Publishers, New York, 2002.

4
D. Čimoka, A.Šostak, $L$-fuzzy syntopogenous structures, Part I: Fundamentals and application to $L$-fuzzy topologies, $L$-fuzzy proximities and $L$-fuzzy uniformities, Fuzzy Sets and Systems, 232 (2013), 74-97, doi: 10.1016/j.fss2013.04.009.

5
M. El-Dardery, A.A. Ramadan, Y.C. Kim, $L$-fuzzy topogenous orders and $L$-fuzzy topologies, J. of Intelligent and Fuzzy Systems, 24, 601-609.

6
J. Fang, $I$-fuzzy Alexandrov topologies and specialization orders, Fuzzy Sets and Systems, 158(2007) 2359-2374, doi: 10.1016/j.fss2007.05.001.

7
P. Hájek, Metamathematices of Fuzzy Logic, Kluwer Academic Publishers, Dordrecht, 1998, doi: 10.1007/978-94-011-5300-3.

8
U. Höhle, S.E. Rodabaugh, Mathematics of Fuzzy Sets: Logic, Topology, and Measure Theory, The Handbooks of Fuzzy Sets Series 3, Kluwer Academic Publishers, Boston, 1999,doi: 10.1007/978-1-4615-5079-2.

9
A.K. Katsaras, Fuzzy proximity spaces, J. Math. Anal. Appl., 68 (1979), 100-110.

10
A.K. Katsaras, C.G. Petalas, A unified theory of fuzzy topologies, fuzzy proximities and fuzzy uniformities, Rev. Roum. Math. Pures Appl., 28 (1983), 845-896.

11
A. K. Katsaras, Fuzzy quasi-proximities and fuzzy quasi-uniformities, Fuzzy Sets and Systems, 27 (1988), 335-343.

12
Y.C. Kim, Y.S. Kim, $L$-approximation spaces and $L$-fuzzy quasi-uniform spaces, Information Sciences. 179(2009), 2028-2048.

12
Y.C. Kim, K.C. Min, $L$-fuzzy proximities and $L$-fuzzy topologies, Information Sciences, 173 (2005), 93-113.

13
H. Lai, D. Zhang, Fuzzy preorder and fuzzy topology, Fuzzy Sets and Systems, 157(2006) 1865-1885, doi: 10.1016/j.fss2006.02.013.

14
A.A. Ramadan, E.H. Elkordy, Y.C. Kim, Perfect $L$-fuzzy topogenous spaces, L-fuzzy quasi-proximities and L-fuzzy quasi-uniform spaces, J. of Intelligent and Fuzzy Systems, 28 (2015), 2591-2604.

15
A.A. Ramadan, E.H.Elkordy, Y.C. Kim, Relationships between $L$-fuzzy quasi-uniform stuctures and $L$-fuzzy topologies, Journal of Intelligent and Fuzzy Systems, 28 (2015), 2319-2327, doi: 10.3233/IFS-141515.

16
S.E. Rodabaugh, E.P. Klement, Topological and Algebraic Structures In Fuzzy Sets, The Handbook of Recent Developments in the Mathematics of Fuzzy Sets, Kluwer Academic Publishers, Boston, Dordrecht, London, 2003.

How to Cite?

DOI: 10.12732/ijpam.v112i4.3 How to cite this paper?

Source:
International Journal of Pure and Applied Mathematics
ISSN printed version: 1311-8080
ISSN on-line version: 1314-3395
Year: 2017
Volume: 112
Issue: 4
Pages: 683 - 694


$L$-CLOSURE OPERATORS AND $L$-FUZZY PRE-PROXIMITIES%22&as_occt=any&as_epq=&as_oq=&as_eq=&as_publication=&as_ylo=&as_yhi=&as_sdtAAP=1&as_sdtp=1" title="Click to search Google Scholar for this entry" rel="nofollow">Google Scholar; DOI (International DOI Foundation); WorldCAT.

CC BY This work is licensed under the Creative Commons Attribution International License (CC BY).