IJPAM: Volume 112, No. 4 (2017)

Title

ON THE MAXIMAL NUMERICAL RANGE
OF ELEMENTARY OPERATORS

Authors

Flora Mati Runji$^1$, John Ogonji Agure$^2$, Fredrick Oluoch Nyamwala$^3$
$^1$Department of Mathematics, Statistics and Actuarial Sciences
Karatina University
P.O. Box 1957-10101, Karatina, KENYA
$^2$Department of Pure and Applied Mathematics
Maseno University
P.O. Box 333, Maseno, KENYA
$^3$Department of Mathematics and Physics
Moi University
P.O. Box 3900-30100, Eldoret, KENYA

Abstract

The notion of the numerical range has been generalized in different directions. One such direction, is the maximal numerical range introduced by Stampfli (1970) to derive an identity for the norm of a derivation on $L(H)$. Unlike the other generalizations, the maximal numerical range has not been largely explored by researchers as many only refer to it in their quest to determine the norm of operators. In this paper we establish how the algebraic maximal numerical range of elementary operators is related to the closed convex hull of the maximal numerical range of the implementing operators $ A=\left(A_{1}, A_{2},..., A_{n}\right)$, $B=\left(B_{1}, B_{2},..., B_{n}\right)$, on the algebra of bounded linear operators on a Hilbert space $H$. The results obtained are an extension of the work done by Seddik [2] and Fong [9].

History

Received: October 24, 2016
Revised: December 8, 2016
Published: February 19, 2017

AMS Classification, Key Words

AMS Subject Classification: 47A12, 47B47
Key Words and Phrases: algebraic maximal numerical range, elementary operator

Download Section

Download paper from here.
You will need Adobe Acrobat reader. For more information and free download of the reader, see the Adobe Acrobat website.

Bibliography

1
A. Seddik, The numerical range of elementary operators II, Linear Algebra Appl., 338 (2001), 239-244, doi: https://doi.org/10.1016/S0024-3795(01)00389-5.

2
A. Seddik, The numerical range of elementary operators, Integr. Eq. Oper. Theory, 43 (2002), 248-252, doi: https://doi.org/10.1007/BF01200256.

3
F.F. Bonsall and J. Duncan, Numerical Range, Volume I, Cambridge University Press, 1973.

4
F.F. Bonsall and J. Duncan, Numerical Range, Volume II, Cambridge University Press, 1973.

5
F.F. Bonsall and J. Duncan, Numerical ranges of operators on normed spaces and elements of normed algebras, London Math. Soc. Lecture Note Series, 2, Cambridge, 1971.

6
G. Lumer and M. Rosenblum, Linear operator equations, Proc. Amer. Math. Soc., 10 (1959), 32-41, doi: https://doi.org/10.1090/S0002-9939-1959-0104167-0.

7
K.E. Gustafson and D.K.M. Rao, Numerical Range: The Field of Values of Linear Operators and Matrices, Springer, 1997.

8
J.G. Stampfli, The norm of a derivation, Pacific J. Math., 33 (1970), 737-747, doi: https://doi.org/10.2140/pjm.1970.33.737.

9
C.K. Fong, On the essential maximal numerical range, Acta Sci. Math., 41 (1979), 307-315.

10
L.A. Fialkow, Elementary Operators and Applications, In: Proceeding of the International Workshop, 1991.

11
L. A. Fialkow, Spectral properties of elementary operators, Acta Sci. Math., 46 (1983), 269-282.

12
C. Apostol and L. Fialkow, Structural properties of elementary operators, Can. J. Math., 38 (1986), 1485-1524, doi: https://doi.org/10.4153/CJM-1986-072-6.

13
R.E. Curto and M. Mathieu, Elementary operators and their applications, In: 3-rd International Workshop, 2009, doi: https://doi.org/10.1007/978-3-0348-0037-2.

14
Gerard J. Murphy, C*-Algebras and Operator Theory, Academic Press Inc., Boston, MA, 1990.

15
M. Takesaki, Theory of Operator Algebras I, Springer-Verlag, New York, 1979, doi: https://doi.org/10.1007/978-1-4612-6188-9.

16
S. Sakai, C*-Algebras and W*-Algebras, Springer, Berlin, 1971, doi: https://doi.org/978-3-642-61993-9.

17
O. Bratteli and D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics, Volumes 1 and 2, Springer, Berlin, 1987 and 1997, doi: https://doi.org/10.1007/978-3-662-02520-8, and doi: https://doi.org/10.1007/978-3-662-03444-6.

How to Cite?

DOI: 10.12732/ijpam.v112i4.6 How to cite this paper?

Source:
International Journal of Pure and Applied Mathematics
ISSN printed version: 1311-8080
ISSN on-line version: 1314-3395
Year: 2017
Volume: 112
Issue: 4
Pages: 741 - 747


Google Scholar; DOI (International DOI Foundation); WorldCAT.

CC BY This work is licensed under the Creative Commons Attribution International License (CC BY).