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Abstract: In this paper, a simple analytical technique has been developed to
determine higher-order approximate periodic solutions of a nonlinear oscillator
with discontinuities for which the elastic force term is proportional to sgn(x).
The classical harmonic balance method cannot be applied directly for such non-
linear problems. It is very difficult to solve nonlinear problems and in general,
it is often more difficult to get an analytic approximation than a numerical one
for such nonlinear problems. Analytical solutions of algebraic equations are
not always possible, especially in the case of a large oscillation. In this article
different parameters of the same nonlinear problems are found, for which the
simple analytical solution produces desired results even for the large oscillation.
We have been found out that a simple analytical principle which works very
well for the excellent agreement of the approximate frequencies and period with
the exact ones.
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1. Introduction

Many complex real world problems in nature are due to nonlinear phenomena.
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Nonlinear processes are one of the biggest challenges and not easy to control
because the nonlinear characteristic of the system abruptly changes due to some
small changes of valid parameters including time. Thus the issue becomes more
complicated and hence needs ultimate solution. Therefore, the studies of ap-
proximate solutions of nonlinear differential equations (NDEs) play a crucial
role to understand the internal mechanism of nonlinear phenomena. Advance
nonlinear techniques are significant to solve inherent nonlinear problems, par-
ticularly those involving differential equations, dynamical systems and related
areas. In recent years, both the mathematicians and physicists have made sig-
nificant improvement in finding a new mathematical tool would be related to
nonlinear differential equations and dynamical systems whose understanding
will rely not only on analytic techniques but also on numerical and asymptotic
methods. They establish many effective and powerful methods to handle the
NDEs.

The study of given nonlinear problems is of crucial importance not only in
all areas of physics but also in engineering and other disciplines, since most
phenomena in our world are essential nonlinear and are described by nonlin-
ear equations. It is very difficult to solve nonlinear problems and in general it
is often more difficult to get an analytic approximation than a numerical one
for a given nonlinear problem. There are many analytical approaches to solve
nonlinear differential equations. One of the widely used techniques is perturba-
tion [1]-[4], whereby the solution is expanded in powers of a small parameter.
However, for the nonlinear conservative systems, generalizations of some of the
standard perturbation techniques overcome this limitation. In particular, gen-
eralization of LP method and He’s homotopy perturbation method yield desired
results for strongly nonlinear oscillators [5]-[12].

The harmonic balance method (HBM) [13]-[22] is another technique for
solving strongly nonlinear systems. Usually, a set of difficult nonlinear alge-
braic equations appears when HBM is formulated. In article [22], such nonlin-
ear algebraic equations are solved in powers of a small parameter. The solu-
tions derived (in [22]) for Duffing equation agree with numerical solutions when
[x(0) = a0, ẋ(0) = 0], a0 = O(1). Sometimes, higher approximations also fail
to measure the desired results when a0 >> 1. In this article this limitation
is removed. Approximate solutions of the same equations are found in which
the nonlinear algebraic equations are solved by a new parameter. The higher
order approximations (mainly third approximation) have been obtained for the
mentioned nonlinear oscillator.
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2. The Method

Let us consider a nonlinear differential equation

ẍ+ ω2
0x = −εf(x, ẋ), [x(0) = a0, ẋ(0) = 0], (1)

where f(x, ẋ) is a nonlinear function such that f(−x,−ẋ) = −f(x, ẋ), ω0 ≥ 0
and ε is a constant.

Consider a periodic solution of Eq. (1) is in the form

x = a0(ρ cos(ωt) + u cos(3ωt) + v cos(5ωt) +w cos(7ωt) + z cos(9ωt) · · · ), (2)

where a0, ρ and ω2 are constants. If ρ = 1−u−v−· · · and the initial phase ϕ0 =
0, solution Eq. (2) readily satisfies the initial conditions [x(0) = a0, ẋ(0) = 0].

Substituting Eq. (2) into Eq. (1) and expanding f(x, ẋ) in a Fourier series,
it converts to an algebraic identity

a0[ρ(ω
2
0 − ω2) cos(ωt) + u(ω2

0 − 9ω2) cos(3ωt) + · · · ] = −ε [F1(a0, u, · · · ) cos(ωt)
+F3(a0, u, · · · ) cos(3ωt) + · · · ]

(3)
By comparing the coefficients of equal harmonics of Eq. (3), the following

nonlinear algebraic equations are found

ρ(ω2
0 − ω2) = −εF1, u(ω2

0 − 9ω2) = −εF3, v(ω2
0 − 25ω2) = −εF5, · · · (4)

With help of the first equation, ω is eliminated from all the rest of Eq. (4).
Thus Eq. (4) takes the following form

ρω2 = ρω2
0 + εF1, 8ω2

0uρ = ε(ρF3 − 9uF1), 24ω2
0vρ = ε(ρF5 − 25vF1), · · ·

(5)
Substitution ρ = 1−u−v−· · · , and simplification, second-, third- equations

of Eq. (5) take the following form

u = G1(ω0, ε, a0, u, v, · · · , λ0), v = G2(ω0, ε, a0, u, v, · · · , λ0), · · · , (6)

where G1, G2, · · · exclude respectively the linear terms of u, v, · · · .
Whatever the values of ω0 and a0, there exists a parameter µ0(ω0, ε, a0) <<

1, such that u, v, · · · are expandable in following power series in terms of λ0

as
u = U1λ0 + U2λ

2
0 + · · · , v = V1λ0 + V2λ

2
0 + · · · , · · · (7)

where U1, U2, · · · , V1, V2, · · · are constants.
Finally, substituting the values of u, v, · · · from Eq. (7) into the first

equation of Eq. (5), ω is determined. This completes the determination of all
related functions for the proposed periodic solution as given in Eq. (2).
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3. Examples

3.1. Nonlinear Oscillator with Discontinuities

Let us consider an anti-symmetric, piecewise constant force oscillator, is gov-
erned by the following differential equation which has been considered by Be-
lendez et al.[25]

ẍ+ sgn(x) = 0. (8)

with initial conditions

x(0) = a0andẋ(0) = 0 (9)

and sgn(x) is defined as

sgn(x) = −1, x < 0
sgn(x) = 1, x > 0

(10)

Eq. (8) models the motion of a punctual ball rolling in a “V” shape trough
in a constant gravitational field. The arms of the “V” make equal angles with
horizontal plane and the origin of the (horizontal) x coordinate is taken to the
point of interaction of the two arms Mickens, R.E., [13]. In a suitable set if
units, the equation of motion can be written as Eq. (8).

All the solutions of Eq. (8) are periodic. We denote the angular frequency
of these oscillations by ω and note that one of our major tasks is to determine
ω(a0), i.e. the functional behavior of ω as a function of the initial amplitude
a0.

Firstly, we consider a first-order approximate solution of Eq. (8) is

x = a0 cosϕ (11)

Where ϕ1 = ω1t and ω1 represent the angular frequency. Let us consider
sgn(x) = 1 can be expanded in a Fourier series as

sgn(x) =
∞
∑

n=0

b2n+1sgn(x) = b1 cosϕ+ b3 cos 3ϕ+ · · · . (12)

Herein b1, b3, · · · are evaluated as

b2n+1 =
4

π

∫ π/2

0
sgn(x) cos[(2n + 1)ϕ]dϕ (13)
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From Eq. (13) we obtained the following coefficient is

b1 =
4

π
(14)

Now using Eq. (12)-(14) into Eq. (8) and then equating the coefficient of cosϕ1

we obtained the following equation is

−a0ω
2
1 +

4

π
= 0 (15)

Here, we can easily found the first-order approximate frequency and period are

ϕ̇ =

√

4

a0π
=

1.128379√
a0

(16)

T1 =
2π

√
a0

1.128379
= 5.568328

√
a0 (17)

We use the solution of the form of Eq. (2) a second-order approximate
solution of Eq. (8) is

x(t) = a0(cosϕ2 + u(cos 3ϕ2 − cosϕ2), (18)

where ϕ2 = ω2t. Herein b1, b3, · · · are evaluated as

b1 =
4
π ,

b3 = − 4
3π ,

(19)

and so on.
Now substituting Eq. (18) into the Eq. (8) along with using Eq. (19) and

Eq. (12) and then equating the coefficients of cosϕ2 and cos 3ϕ2, the following
equations are obtained

−(1− u)a0ω
2
2 +

4

π
= 0, (20)

−9a0uω
2
2 −

4

3π
= 0. (21)

After simplification, Eq. (20) takes the form

ω2
2 =

(

4

π

)

/a0(1− u) (22)

By elimination of ω2
2 from Eq. (21) with the help of Eq. (22), the equation

of u is obtained as
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u = −λ0, whereλ0 =
4

104
. (23)

Substituting the value of u from Eq. (23) into the Eq. (22) we have got the
second-order approximate angular frequency and period are

ω2 =

√

(

4

π

)

/a0(1− u) =
1.10729√

a0
(24)

T2 =
2π

√
a0

1.10729
= 5.67438

√
a0 (25)

In a similar way, the method can be used to determine higher order approx-
imations. In this article, a third approximate solution is of the form,

x(t) = a0 cosϕ3 + a0u(cos 3ϕ3 − cosϕ3) + a0v(cos 5ϕ3 − cosϕ3), (26)

where ϕ3 = ω3t. Substituting Eq. (26) into the Eq. (8) and also using Eq.
(12)-(13) and then setting the coefficients of cosϕ3, cos 3ϕ3, and cos 5ϕ3 the
related functions are obtained from the following equations

−(1− u− v)a0ω
2
3 +

4

π
= 0, (27)

−9ua0ω
2
3 −

4

3π
= 0, (28)

−25va0ω
2
3 +

4

5π
= 0. (29)

From the Eq. (27) we can easily written as

ω2
3 =

(

4

π

)

/a0(1− u− v) (30)

Now using Eq. (30) into the Eq. (28)-(29) we get the equation of u and v
are

u = λ0 (−1 + v) , (31)

v = µ0(1− u), (32)

where λ0 is define as Eq. (23) and µ0 =
4

504 .
The algebraic relation between λ0 and µ0 is

µ0 = 104λ0/504. (33)
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Substituting this value of µ0 from the Eq. (33) into the Eq. (32), and then
solved Eq. (31) and Eq. (32) in powers of λ0 is

u =
−63λ0 + 13λ2

0

63 + 13λ2
0

(34)

v =
13λ0 + 13λ2

0

63 + 13λ2
0

(35)

Substituting the values of u and v from Eq. (34)-(35) into Eq. (30), we get
the third-order approximate angular frequency and period is

ω3 =

√

(

4

π

)

/a0(1− u− v) =
1.111876√

a0
(36)

T3 =
2π

√
a0

1.111876
= 5.65098

√
a0 (37)

4. Results and Discussions

We illustrate the accuracy of a simple analytical method by comparing the
approximate angular frequencies and periods previously obtained with the exact
frequency ωe and period Te. For this nonlinear problem, the exact angular
frequency and period are

ωe(a0) =
1.110721√

a0

Te(a0) = 5.656854
√
a0

as stated by Wu et al.[20].

The periodic values and their relatives errors (RE) obtained in this paper by
applying a simple analytical technique of mentioned nonlinear oscillator with
discontinuities are the following

T1(a0) = 5.568328
√
a0RE = 1.6%

T2(a0) = 5.67438
√
a0RE = 0.30%

T3(a0) = 5.65098
√
a0RE = 0.10%
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Where the percentage errors (RE) were calculated using the following equa-
tion

RE = 100 ×
∣

∣

∣

∣

Ti(a0)− Te(a0)

Te(a0)

∣

∣

∣

∣

i = 1, 2, 3.

Belendez et al.[25] approximately solved Eq. (8) using He’s homotopy per-
turbation method (HPM). They achieved the following results for the first and
second and third approximation orders

T1(a0) = 5.568328
√
a0RE = 1.6%

T2(a0) = 5.693731
√
a0RE = 0.65%

T3(a0) = 5.670590
√
a0RE = 0.24%

Belendez et al.[26] approximately solved Eq. (8) using He’s homotopy per-
turbation method (HPM). They achieved the following results for the first and
second approximation orders

TB1(a0) = π
√
πa0 ≈ 5.568328

√
a0RE = 1.6%

TB2(a0) = π

√

2πa0

1 +
√
4− π

≈ 5.673551
√
a0RE = 0.30%

Wu et al.[20] approximately solved Eq. (8) using an improved harmonic
balance method that incorporates the salient features of both CityplaceNew-
ton’s method and the harmonic balance method. They achieved the following
results for the first and second approximation orders

TWSL1(a0) = π
√
πa0 ≈ 5.568328

√
a0RE = 1.6%

TWSL2(a0) = π

√

27πa0
26

≈ 5.674401
√
a0RE = 0.31%

Observing all the approximate angular frequencies and periods, the correct-
ness of the result obtained in this paper is better than those obtained previously
by Belendez et al.[25] and only second-order approximate angular frequency and
period is all most similar those obtained previously by Wu et al.[20] and Be-
lendez et al.[26]. But it can be observed that these equations provide excellent
approximations to the exact period regardless of the oscillation amplitude a0. It
has been mentioned that the procedure of Wu et al.[20], Belendez et al.[25] and
Belendez et al.[26] is laborious especially for obtaining the higher approxima-
tions. The advantages of this method include its simplicity and computational
efficiency, and the ability to objectively better agreement in higher-order ap-
proximate solution.
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5. Conclusion

Based on a harmonic balance method (HBM), a simple analytical technique has
been presented to determine higher-order approximate frequencies and periods
for a conservative anti-symmetric, constant force nonlinear oscillator for which
the elastic force term is proportional to sgn(x). In compared with the previously
published methods, determination of frequencies and periods is straightforward
and simple. Excellent agreement between approximate periods and the exact
one has been demonstrate and discussed, and the discrepancy of the third order
approximate period with respect to the exact one is as low as 0.10% but Belen-
dez et. al. [25] those obtained by 0.24%. Finally, we can say that the method
presented in this article for solving strongly nonlinear differential equations can
be considered as an efficient alternative of the previously proposed methods.
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