THE PRODUCT OF LAPLACE OPERATOR AND ULTRAHYPERBOLIC OPERATOR RELATED TO THE BIHARMONIC EQUATION AND WAVE EQUATION

T. Panyatip
Division of Mathematics
Faculty of Science and Agriculture Technology
Rajamangala University of Technology Lanna
Tak, 63000, THAILAND

Abstract: In this paper, we study the nonlinear equation

\[\Delta_{c_1}^{k_1} \Delta_{c_2}^{k_2} u(x) = f(x, \Delta_{c_1}^{k_1-1} \Delta_{c_2}^{k_2} u(x)) \]

and

\[\Delta_{c_1}^{k_1} \Box_{c_2}^{k_2} u(x) = f(x, \Delta_{c_1}^{k_1-1} \Box_{c_2}^{k_2} u(x)), \]

where the operator \(\Delta \) and \(\Box \) are the Laplace operator and the Ultrahyperbolic operator, respectively. \(n \) is the dimension of the Euclidean space \(\mathbb{R}^n \), \(x = (x_1, x_2, \ldots, x_n) \in \mathbb{R}^n \), \(k_1 \) and \(k_2 \) are nonnegative integer, \(u(x) \) is an unknown and \(f \) is a given function.

AMS Subject Classification: 46F10
Key Words: Laplace operator, ultrahyperbolic operator

1. Introduction

Gelfand and Shilov [3] have shown that the iterated Laplace equation \(\Delta^k u(x) = f(x) \) will be solved when we have obtained an elementary solution \(E(x) \). Kananthai [5], [6] has shown that \(u(x) = (-1)^k R_{2k}^c(x) \) be the elementary solution of the equation \(\Delta^k u(x) = \delta(x) \), where \(R_{2k}^c(x) \) defined by (5) and \(u(x) = \delta(x) \).
$((-1)^{k-1} R_{2(k-1)}^e (x))^{(l)}$ be a solution of $\Delta^k u(x) = 0$.

R. Courant and D. Hilbert [1] have studied the nonlinear equation of the form $\Delta u(x) = f(x, u(x))$ with f defined and continuous function for all $x \in \Omega \cup \partial \Omega$ where Ω is an open set in \mathbb{R}^n, $\partial \Omega$ denotes the boundary of Ω and Δ is the Laplace operator, defined by

$$\Delta = \frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} + \cdots + \frac{\partial^2}{\partial x_n^2}. \tag{1}$$

They found that the solution $u(x)$ of such equation is unique under the condition $|f(x, u(x))| \leq N$ where N is a constant for all $x \in \Omega$ and the boundary condition $u(x) = 0$ for all $x \in \partial \Omega$.

In this paper, we study the solution of nonlinear equation

$$\Delta_{c_1}^{k_1} \Delta_{c_2}^{k_2} u(x) = f(x, \Delta_{c_1}^{k_1-1} \Delta_{c_2}^{k_2} u(x))$$

and

$$\Delta_{c_1}^{k_1} \Box_{c_2}^{k_2} u(x) = f(x, \Delta_{c_1}^{k_1-1} \Box_{c_2}^{k_2} u(x)),$$

where the operator Δ and \Box are the Laplace operator and the Ultrahyperbolic operator, respectively. n is the dimension of the Euclidean space \mathbb{R}^n, $x = (x_1, x_2, \ldots, x_n) \in \mathbb{R}^n$, k_1 and k_2 are nonnegative integer, $u(x)$ is an unknown and f is a given function. Moreover the solution $u(x)$ related to the nonhomogeneous biharmonic equation and nonhomogeneous wave equation depend on the conditions of k_1 and k_2.

2. Preliminaries

Definition 1. Let c_1, c_2 be positive numbers, $p + q = n$ and k_1, k_2 is a nonnegative integer. The Laplace operator iterated k_1, k_2 times are defined by

$$\Delta_{c_1}^{k_1} = \left[\frac{1}{c_1^2} \sum_{i=1}^p \frac{\partial^2}{\partial x_i^2} + \sum_{j=p+1}^{p+q} \frac{\partial^2}{\partial x_j^2} \right]^{k_1} \tag{2}$$

$$\Delta_{c_2}^{k_2} = \left[\frac{1}{c_2^2} \sum_{i=1}^p \frac{\partial^2}{\partial x_i^2} + \sum_{j=p+1}^{p+q} \frac{\partial^2}{\partial x_j^2} \right]^{k_2} \tag{3}$$

The Ultrahyperbolic operator iterated k_2 times is defined by

$$\Box_{c_2}^{k_2} = \left[\frac{1}{c_2^2} \sum_{i=1}^p \frac{\partial^2}{\partial x_i^2} - \sum_{j=p+1}^{p+q} \frac{\partial^2}{\partial x_j^2} \right]^{k_2} \tag{4}$$
Definition 2. Let \(x = (x_1, x_2, \ldots, x_n) \in \mathbb{R}^n \) and the function \(R_\beta^e(X) \) and \(R_\gamma^e(Y) \) are defined by

\[
R_\beta^e(X) = 2^{-\beta} \pi^{-\frac{n}{2}} \Gamma \left(\frac{n - \beta}{2} \right) \frac{X^{\frac{\beta - n}{2}}}{\Gamma \left(\frac{\beta}{2} \right)}
\]

and

\[
R_\gamma^e(Y) = 2^{-\gamma} \pi^{-\frac{n}{2}} \Gamma \left(\frac{n - \gamma}{2} \right) \frac{Y^{\frac{\gamma - n}{2}}}{\Gamma \left(\frac{\gamma}{2} \right)},
\]

where

\[
X = c_1^2 (x_1^2 + x_2^2 + \ldots + x_p^2) + (x_{p+1}^2 + x_{p+2}^2 + \ldots + x_{p+q}^2),
\]

\[
Y = c_2^2 (x_1^2 + x_2^2 + \ldots + x_p^2) + (x_{p+1}^2 + x_{p+2}^2 + \ldots + x_{p+q}^2), p + q = n.
\]

The function \(R_\beta^e(X) \) and \(R_\gamma^e(Y) \) are called the elliptic kernel of Marcel Riesz and is ordinary function for \(Re(\beta) \geq n \) and is a distribution of \(\beta \) for \(Re(\beta) < n \).

Definition 3. Let \(x = (x_1, x_2, \ldots, x_n) \in \mathbb{R}^n \) and

\[
Z = c_2^2 (x_1^2 + x_2^2 + \ldots + x_p^2) - (x_{p+1}^2 + x_{p+2}^2 + \ldots + x_{p+q}^2), p + q = n
\]

the nondegenerated quadratic form. Denote the interior of the forward cone by

\[
\Gamma_+ = \{ x \in \mathbb{R}^n : x_1 > 0 \text{ and } Z > 0 \}
\]

and the closure of \(\Gamma_+ \) by \(\overline{\Gamma}_+ \). For any complex number \(\alpha \), define

\[
R_\alpha^H(Z) = \begin{cases}
\frac{Z^{(\alpha-n)/2}}{K_n(\alpha)} & \text{for } x \in \Gamma_+, \\
0 & \text{for } x \notin \Gamma_+,
\end{cases}
\]

where

\[
K_n(\alpha) = \frac{\pi^{-\frac{n-1}{2}} \Gamma \left(\frac{\alpha + 2 - n}{2} \right) \Gamma \left(\frac{1 - \alpha}{2} \right) \Gamma(\alpha)}{\Gamma \left(\frac{\alpha + 2 - p}{2} \right) \Gamma \left(\frac{\alpha - p}{2} \right)}.
\]

The function \(R_\alpha^H(Z) \) was introduced by Nozaki [5, p.72]. It is well known that \(R_\alpha^H(Z) \) is ordinary function for \(Re(\alpha) \geq n \) and it is a distribution of \(\alpha \) for \(Re(\beta) < n \).

Lemma 4. Given the equation

\[
\triangle^k_{c_1} u(x) = \delta(x)
\]

and

\[
\triangle^k_{c_2} v(x) = \delta(x),
\]

where \(\triangle^k \) is the \(k \)-th order Poisson equation. For \(c_1 \) and \(c_2 \) are positive constants, and \(\delta(x) \) is the Dirac delta function.
where $\triangle_{c_1}^{k_1}$ and $\triangle_{c_2}^{k_2}$ are defined by (2) and (3) respectively. Then we obtain $u(x) = (-1)^{k_1} R_{2k_1}^e (X)$ and $v(x) = (-1)^{k_2} R_{2k_2}^e (Y)$ is an elementary solution of (9) and (10) respectively. $R_{2k_1}^e (X)$ and $R_{2k_2}^e (Y)$ are defined by (5) and (6) respectively, with $\beta = 2k_1, \gamma = 2k_2$.

Proof. See [1].

Lemma 5. Given the equation
\[\square_{c_2}^{k_2} w(x) = \delta(x), \]
where $\square_{c_2}^{k_2}$ is defined by (4). Then we obtain $w(x) = R_{2k_2}^H (Z)$ is an elementary solution of (10). $R_{2k_2}^H (Z)$ is defined by (8) with $\alpha = 2k_2$.

Proof. See [7].

Lemma 6. Given the equation
\[\triangle_{c_1}^{k_1} u(x) = 0, \]
where $\triangle_{c_1}^{k_1}$ is defined by (2). We obtain $u(x) = ((-1)^{k_1-1} R_{2(k_1-1)}^e (X))^{(l)}$ as a solutions of (12) where $l = (n-4)/2, n \geq 4$ is nonnegative integer and n is even and $R_{2(k_1-1)}^e (X)$ defined by equation (5) with l derivatives and $\beta = 2(k_1-1)$.

Proof. See [6].

Lemma 7. Given the equation
\[\square_{c_2}^{k_2} u(x) = 0, \]
where $\square_{c_2}^{k_2}$ is the Ultrahyperbolic operator iterated k-times defined by equation (4). Then we obtain $u(x) = (R_{2(k-1)}^H (Z))^{(m)}$ as a solutions of (13) with $m = (n-4)/2, n \geq 4$ and n is even. The function $(R_{2(k-1)}^H (Z))^{(m)}$ is defined by equation (8) with m derivatives and $\alpha = 2(k-1)$.

Proof. See [6].

Lemma 8. Given the equation
\[\triangle_{c_1} u(x) = f(x, u(x)), \]
where f is defined and has continuous first derivatives for all $x \in \Omega \cup \partial \Omega, \Omega$ is an open subset of \mathbb{R}^n and $\partial \Omega$ denotes the boundary of Ω. Assume f is a bounded, that is $|f(x,u)| \leq N$ and the boundary condition $u(x) = 0$ for $x \in \partial \Omega$. Then we obtain $u(x)$ as a unique solution of (14).

Proof. We can prove this lemma by the method of iterations and the Schauder’s estimates, see [1].
3. Main Results

Theorem 9. Given the nonlinear equation

\[\triangle_{c_1}^{k_1} \triangle_{c_2}^{k_2} u(x) = f(x, \triangle_{c_1}^{k_1-1} \triangle_{c_2}^{k_2} u(x)) \]

(15)

where \(\triangle_{c_1}^{k_1}, \triangle_{c_2}^{k_2} \) are defined by (2) and (3) respectively. Let \(f \) be defined and having continuous first derivative for all \(x \in \Omega \cup \partial \Omega \), \(\Omega \) is an open subset of \(\mathbb{R}^n \) and \(\partial \Omega \) denotes the boundary of \(\Omega \) and \(n \) is even with \(n \geq 4 \). Suppose \(f \) be a bounded function, that is

\[|f(x, \triangle_{c_1}^{k_1-1} \triangle_{c_2}^{k_2} u(x))| \leq N \]

(16)

and the boundary condition

\[\triangle_{c_1}^{k_1-1} \triangle_{c_2}^{k_2} u(x) = 0 \]

(17)

for all \(x \in \partial \Omega \). Then we obtain

\[u(x) = (-1)^{k_1-1} R^{e}_{2(k_1-1)}(X) \ast (-1)^{k_2} R^{e}_{2k_2}(Y) \ast W(x) \]

(18)

as a solution of (15) with the boundary condition

\[u(x) = ((-1)^{k_1-2} R^{e}_{2(k_1-2)}(X))^{(l)} \ast (-1)^{k_2} R^{e}_{2k_2}(Y) \]

for all \(x \in \partial \Omega \). And we have

\[u(x) = (-1) R^{e}_{2}(Y) \ast W(x) \]

(21)

as a solution of (19).
Proof. From equation (15), we have
\[\triangle_{c_1}^{k_1} \triangle_{c_2}^{k_2} u(x) = \triangle (\triangle_{c_1}^{k_1-1} \triangle_{c_2}^{k_2} u(x)) = f(x, \triangle_{c_1}^{k_1-1} \triangle_{c_2}^{k_2} u(x)). \] (22)
Since \(u(x) \) has continuous derivatives up to order \(k_1 + k_2 \) for \(k_i = 1, 2, 3, \ldots ; i = 1, 2 \) we can assume
\[\triangle_{c_1}^{k_1-1} \triangle_{c_2}^{k_2} u(x) = W(x) \] (23)
for all \(x \in \partial \Omega \). Thus, (22) can be written in the form
\[\triangle_{c_1}^{k_1} \triangle_{c_2}^{k_2} = \triangle_{c_1} W(x) = f(x, W(x)). \] (24)
by (16)
\[|f(x, W(x))| \leq N. \] (25)
and by (17), \(W(x) = 0 \) or
\[\triangle_{c_1}^{k_1-1} \triangle_{c_2}^{k_2} u(x) = 0 \] (26)
for all \(x \in \partial \Omega \). Thus by Lemma 8 there exist a unique solution \(W(x) \) of (24) which satisfies (25). The function \((-1)^{k_1-1} R_{2(k_1-1)}^{e}(X) \) and \((-1)^{k_2} R_{2k_2}^{e}(Y) \) are the elementary solution of the operators \(\triangle_{c_1}^{k_1-1} \) and \(\triangle_{c_2}^{k_2} \) respectively. Thus we have \(\triangle_{c_1}^{k_1-1}(-1)^{k_1-1} R_{2(k_1-1)}^{e}(X) = \delta, \triangle_{c_2}^{k_2}(-1)^{k_2} R_{2k_2}^{e}(Y) = \delta, \) where \(\delta \) is the Dirac-delta distribution. The functions \(R_{2(k_1-1)}^{e}(X) \) and \(R_{2k_2}^{e}(Y) \) are defined by (5) and (6) respectively, with with \(\beta = 2k_1, \gamma = 2k_2 \). Thus, convolving both sides of (23) by \((-1)^{k_1-1} R_{2(k_1-1)}^{e}(X) \) \((-1)^{k_2} R_{2k_2}^{e}(Y) \) and by the properties of convolution, we obtain
\[u(x) = (-1)^{k_1-1} R_{2(k_1-1)}^{e}(X) \ast (-1)^{k_2} R_{2k_2}^{e}(Y) \ast W(x) \] (27)
as required. Consider the condition \(\triangle_{c_1}^{k_1-1} \triangle_{c_2}^{k_2} u(x) = 0 \) for all \(x \in \partial \Omega \). By Lemma 6, we have
\[\triangle_{c_2}^{k_2} u(x) = ((-1)^{k_1-2} R_{2(k_1-2)}^{e}(X))^{(l)} \]
\[u(x) = ((-1)^{k_1-2} R_{2(k_1-2)}^{e}(X))^{(l)} \ast (-1)^{k_2} R_{2k_2}^{e}(Y) \]
where \(l = (n-4)/2, n \geq 4 \) is nonnegative integer and \(n \) is even and \(R_{2(k_1-2)}^{e}(X) \) defined by equation (5) with \(l \) derivatives and \(\beta = 2(k_1 - 2). \) for all \(x \in \partial \Omega \) and \(k = 2, 3, 4, \ldots. \)
Moreover, for \(k_1 = 1, k_2 = 1 \) then (15) becomes
\[\triangle_{c_1} \triangle_{c_2} u(x) = f(x, \triangle_{c_2} u(x)) \] (28)
with boundary condition
$$\Delta_{c_2} u(x) = 0$$
for all $x \in \partial \Omega$. We have
$$u(x) = (-1) R^e_{2(k_1-1)}(X) * W(x)$$
as a solution of (28), which is called the nonhomogeneous biharmonic equation.

Theorem 10. Given the nonlinear equation
$$\Delta_{c_1}^{k_1} \Box_{c_2}^{k_2} u(x) = f(x, \Delta_{c_1}^{k_1-1} \Box_{c_2}^{k_2} u(x))$$
where $\Delta_{c_1}^{k_1}, \Box_{c_2}^{k_2}$ are defined by (2) and (4) respectively. Let f be defined and having continuous first derivative for all $x \in \Omega \cup \partial \Omega$, Ω is an open subset of \mathbb{R}^n and $\partial \Omega$ denotes the boundary of Ω and n is even with $n \geq 4$. Suppose f be a bounded function, that is
$$|f(x, \Delta_{c_1}^{k_1-1} \Box_{c_2}^{k_2} u(x))| \leq N$$
and the boundary condition
$$\Delta_{c_1}^{k_1-1} \Box_{c_2}^{k_2} u(x) = 0$$
for all $x \in \partial \Omega$. Then we obtain
$$u(x) = (-1)^{k_1-1} R^e_{2(k_1-1)}(X) * R^H_{2k_2}(Z) * W(x)$$
as a solution of (30) with the boundary condition
$$u(x) = ((-1)^{k_1-2} R^e_{2(k_1-2)}(X))^{(l)} * R^H_{2k_2}(Z)$$
$W(x)$ is a continuous function for $x \in \Omega \cup \partial \Omega$, where $l = (n - 4)/2, n \geq 4$ is nonnegative integer and n is even and $R^e_{2(k_1-2)}(X)$ defined by equation (5) with l derivatives and $\beta = 2(k_1 - 2)$ and $R^H_{2k_2}(Z)$ are defined by (8) with $\alpha = 2k_2$. Moreover, for $k_1 = 1, k_2 = 1$ then (30) becomes
$$\Delta_{c_1} \Box_{c_2} u(x) = f(x, \Box_{c_2} u(x))$$
with boundary condition
$$\Box_{c_2} u(x) = 0$$
for all $x \in \partial \Omega$. Then we have

$$u(x) = R_2^H(Z) \ast W(x)$$

(36)

as a solution of (34) with the boundary condition $u(x) = \delta^{(m)}(Z)$ and $m = (n-4)/2, n \geq 4$ and n is even. Also, if we put $k_2 = 1, p = 1$ and $q = n - 1$ in (4) the operator $\square_{c_2}^{k_2}$ reduce to the wave operator

$$\square_{c_2} = \frac{1}{c_2^2} \frac{\partial^2}{\partial x_1^2} - \left(\frac{\partial^2}{\partial x_2^2} + \cdots + \frac{\partial^2}{\partial x_n^2} \right).$$

Thus, the solution $u(x)$ of (36) reduce to the solution of the wave equation $\square_{c_2} u(x) = W(x)$ with boundary condition $\square_{c_2} u(x) = 0$.

Proof. The proof of this Theorem is similar to the proof of Theorem 3.1, by including Lemma (5) and (7).

Acknowledgments

I would like to thank Rajamangala University of Technology Lanna, Thailand for financial support.

References

