صندلی اداری

POSITIVE SOLUTIONS FOR SINGULAR $M$-LAPLACIAN BOUNDARY VALUE PROBLEMS

Fu- Hsiang Wong, Chien-Hsiung Lin, Chin-Chen Chou, Wei-Cheng Lian

Abstract


Under some reasonable hypotheses, the singular $m$-Laplacian boundary value problems
$$\left\{\!\!\!\!
\begin{array}{l}
\displaystyle {(E)(|u'(t)|^{m-2}u'(t))'+ f(t,u(t),u'(t))=0,\ \theta_1 < t <\theta_2(m\ge 2),}\\[4pt]
\displaystyle {(BC)u'(\theta_1 )=u(\theta_2)=0,}\\
\end{array}\right.
\eqno{(BVP)}
$$
have a positive solutions in $C^2[\theta_1,\theta_2)\cap
C[\theta_1,\theta_2]$.

Full Text: Postscript

Refbacks

  • There are currently no refbacks.
گن لاغری

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.

IJDEA, Academic Publications, Ltd.