SYZYGIES OF REDUCIBLE CURVES

E. Ballico
Department of Mathematics
University of Trento
38 123 Povo (Trento) - Via Sommarive, 14, ITALY
e-mail: ballico@science.unitn.it

Abstract: Here we use works by Schreyer and Aprodu to check the Green conjecture for certain reducible curves with a nice nodal model inside $\mathbb{P}^1 \times \mathbb{P}^1$.

AMS Subject Classification: 14H20, 14H51
Key Words: syzygies, reducible curves, stable curves

*

For any scheme X and any spanned line bundle L on X and all non-negative integers a, b let $K_{u,v}(X, L)$ denote the Koszul cohomology groups (see [8], [4]).

We first use [11] to get several stable reducible curves X with ω_X very ample and for which Green's conjecture holds.

Theorem 1. Fix integers q, p, δ such that $q \geq p \geq 3, 0 \leq \delta \leq p - 2$. If $(p, q, \delta) = (3, 3, 1)$, then assume Y irreducible. If $(p, \delta) = (3, 1)$ and $q > 3$, then assume that Y has no component of type $(0, 1)$. Fix a general $S \subset \mathbb{P}^1 \times \mathbb{P}^1$ such that $\sharp(S) = \delta$. Let $Y \subset \mathbb{P}^1 \times \mathbb{P}^1$ be any reduced curve of type (p, q) such that $S \subset Y$ and Y has an ordinary node at each point of S. Let $u : X \to Y$ be the partial normalization of Y in which we normalize only the points of S. Then X is connected and Gorenstein, $p_a(X) = pq - p - q + 1 - \delta$, ω_X is very ample and $K_{x,1}(X, \omega_X) = 0$ for every $x \geq g - p + 1$.

See Lemma 5 for a list of reducible curves to which Theorem 1 may be applied.

Received: July 2, 2009 © 2009 Academic Publications
Proposition 1. Fix integers p, g, c such that $p \geq 2$, $g > p(p - 1)$ and $0 \leq c \leq g$. There is an integral nodal curve X such that:

(i) $p_\delta(X) = g$, $\sharp(S_{\text{Sing}}(X)) = c$, there is $M \in \text{Pic}^p(X)$ such that $h^0(X, M) = 2$; while there is no $N \in \text{Pic}^{p-1}(X)$ with $h^0(X, N) \geq 2$;

(ii) there are an integer $y \geq 2g$ and $R \in \text{Pic}^y(X)$ such that $K_{h^0(X,R)-p,1}(X, R) = 0$;

(iii) $K_{x,1}(X, L) = 0$ for every integer $d \geq y + 2g$, every integer $x \geq d + 1 - g - p$, and every $L \in \text{Pic}^x(X)$, i.e. L has property M_{k-1}.

In particular (iii) implies that X satisfies the Green-Lazarsfeld conjecture.

For any scheme A and any $P \in A_{\text{reg}}$ let $\{2P, A\}$ denote the closed subscheme of A with I_P^2 as its ideal sheaf. For any finite $S \subset A_{\text{reg}}$ set $\{2S, A\} := \cup_{P \in S}\{2P, A\}$.

Lemma 1. Fix integers q, p, δ such that $q \geq p \geq 2$ and $0 \leq \delta \leq p - 2$. Fix a general $S \subset \mathbb{P}^1 \times \mathbb{P}^1$ such that $\sharp(S) = \delta$. Let $Y \subset \mathbb{P}^1 \times \mathbb{P}^1$ be any reduced curve of type (p, q) such that $S \subset Y$ and Y has an ordinary node at each point of S. Let $u : X \rightarrow Y$ be the partial normalization of Y in which we normalize only the points of S. Then X is connected.

Proof. Assume that X is not connected and write $X = A \sqcup B$ with A one of its connected components. Set $A' := u(A)$ and $B' := u(B)$. Call (a, b) the bidegree of A'. Thus B' has bidegree $(p - a, q - b)$. Without loosing generality we may assume $0 \leq a \leq p/2$. Since Y is nodal, $A' \cap B' \subseteq S$ and A' intersects transversally B', i.e. $\sharp(A' \cap B') = a(q - b) + b(p - a)$. Thus

\[a(q - b) + b(p - a) \leq p - 2. \quad (1) \]

Since $a \leq p/2$, the second term of the left hand side of (1) gives $b \in \{0, 1\}$. If $b \in \{0, 1\}$, then the first term of the left hand side of (1) gives $a = 0$. Even in the remaining case $(a, b) = (0, 1)$, the inequality (1) fails. \hfill \Box

Lemma 2. Fix integers $u \geq 2$ and $v \geq 2$ and a general $S \subset A := \mathbb{P}^1 \times \mathbb{P}^1$ such that $\sharp(S) = uv - u - v + 1$. There is an integral $B \in \mathcal{I}_{\{2S, A\}}(u, v)$ if and only if $(u, v) = (2, 2)$.

Proof. The “if” part is obvious. We only check the “only if” part. Fix an integer $t \geq 0$ and let $B \subset A$ be a general subset such that $\sharp(A) = t$. Since $u \geq 2$ and $v \geq 2$, [5], Corollary 4.6, gives that either $h^0(A, \mathcal{I}_{\{2B, A\}}(u, v)) = 0$ (case $3t \geq (u + 1)(v + 1)$) or $h^1(A, \mathcal{I}_{\{2B, A\}}(u, v)) = 0$ (case $3t \leq (u + 1)(v + 1)$), unless $(u, v, t) = (4, 4, 8)$ (in the exceptional case $\mathcal{I}_{\{2B, A\}}(4, 4) = \{2\Gamma\}$, where Γ is the only smooth elliptic curve of bidegree $(2, 2)$ containing B). If $uv + u + v \geq
3uv - 3u - 3v + 3, i.e. if \(2u + 2v \geq 2uv + 3\), then \(u = v = 2\). No other case may arise.

Proof of Theorem 1. Obviously \(X\) is Gorenstein. Lemma 1 gives the connectedness of \(X\). The adjunction formula on \(\mathbb{P}^1 \times \mathbb{P}^1\) gives the value of \(p_a(Y)\) and hence of \(p_a(X)\).

(a) Here we check that \(X\) is very ample. Assume that \(X\) is not very ample. By [6], Theorem 3.6, \(X\) is either honestly hyperelliptic or \(X\) is not numerically 3-connected.

(a1) Here show that \(X\) is 3-connected. Let \(A\) be a proper subcurve of \(X\). Set \(B := \overline{X \setminus A}, A' := u(A)\) and \(B' := u(B)\). In order to obtain a contradiction we assume length\((A \cap B) \leq 2\). Let \((a, b)\) the bidegree of \(A'\). Hence \(B'\) has bidegree \((p - a, q - b)\). Without losing generality we may assume \(0 \leq a \leq p/2\). Assume length\((A \cap B) \leq 2\). Since each point of \(S\) is an ordinary node of \(Y\), the scheme \(A' \cap B'\) is the disjoint union of a scheme isomorphic to \(A \cap B\) and a subset \(S'\) of \(S\). Set \(z := \sharp(S')\). We get

\[
a(q - b) + b(p - a) \leq z + 2 \leq \delta + 2 \leq p. \tag{2}
\]

Since \(a \leq p - 2\), (2) implies \(b \leq 1\) (the case \((a, b, z, \delta) = (p/2, 2, p - 2, p - 2)\) is excluded, because \(q \geq p \geq 3\)). First assume \(b = 0\). Since \((a, b) \neq (0, 0)\) and \(q \geq p\), we get \(a = 1\) and \(z = \delta = p - 2\). However, the generality of \(S\) implies that each curve of bidegree \((1, 0)\) contains at most one point of \(S\). Hence \(z = \delta = 1\) and \(q = 3\). Hence \(p = 3\). Thus we are in the excluded case \((p, q, \delta) = (3, 3, 1)\). Now assume \(b = 1\). Since \(q \geq b\), (2) gives \(a = 0\) and \(z = \delta = p - 2\). However, the generality of \(S\) implies that every curve of bidegree \((0, 1)\) contains at most one point of \(S\). Thus \(z = \delta = 1\) and \(p = 3\). Hence we are in the excluded case \((p, \delta) = 1\) with \(Y\) having a component of type \((0, 1)\).

(a2) Here we assume that \(X\) is honestly hyperelliptic, i.e. assume the existence of a finite and flat morphism \(f : X \to \mathbb{P}^1\) such that \(\deg(f) = 2\). Set \(R := f^*(\mathcal{O}_{\mathbb{P}^1}(1))\). \(R\) is an ample and spanned line bundle and \(\deg(R) = 2\). The existence of \(f\) shows that either \(X\) is irreducible or it has two irreducible components, each of them isomorphic to \(\mathbb{P}^1\). First assume that \(X\) is reducible and call \(U, V\) the irreducible components of \(X\). Set \(U' := u(U)\) and \(V' := u(V)\). Let \((c, d)\) be the bidegree of \(U'\). Hence \(V'\) has bidegree \((p - c, q - d)\). Without losing generality we may assume \(0 \leq c \leq p/2\). We have \(p_a(U') = cd - c - d + 1\) and \(p_a(V') = (p - c)(q - d) - p + c - q + d + 1\). Since \(U \cong V \cong \mathbb{P}^1\) and each point of \(S\) is an ordinary node of \(Y\), we get \(cd - c - d + 1 + (p - c)(q - d) - p + c - q + d + 1 \leq \delta\), i.e.

\[
pq + 2cd - cq - dp + 2 \leq \delta \leq p - 2. \tag{3}
\]
If $c = 0$, then $d = 1$, because U is irreducible. In this case (3) fails. Now assume $c = 1$. In this case (3) gives $pq + 2d - q - dp \leq p - 4$. To get a contradiction we see that the last inequality fails if either $d \geq q - 2$ (just because $q \geq p \geq 3$) or $d \leq q - 3$ and $2d \geq q$ (because $3p > p - 4$) or $d \leq q - 3$ and $2d < q$ (because $p \geq 3$). Now assume $d = 0$. Since V is irreducible, we get $c = 0$. Hence in this case (3) fails. Now assume $d = 1$. In this case (3) gives $pq + 2c - eq - p + 2 \leq p - 2$. To get a contradiction we see that the last inequality fails if either $c \geq p - 2$ (obvious) or $c \leq p - 3$ (because $3q \geq 3p > p - 4$). If $d = q$, then $c = 1$, because V is connected; we excluded this case. Now assume $d = q - 1$. In this case (3) gives $p + (2q - 2)c \leq 2c + p - 4$, which is obviously false. Hence from now on we may assume $2 \leq c \leq p/2$ and $2 \leq d \leq q - 2$. Since $p_{\delta}(U) = p_{\delta}(V) = 0$ and Y is nodal at each point of S, we also get $h^i(U \cap V) = cd - c - d + 1$ and $h^i(U \cap V) = (p - c)(q - d) - p - q + c + d + 1$. The contradiction comes from Lemma 2 applied to the integers $(u, v) = (c, d)$ and $(u, v) = (p - c, p - c)$, even if $p = q = 4$ and $c = d = 2$.

Now assume that X is irreducible. If $\delta = 0$, then $Y = X$ and hence R is a degree 2 spanned line bundle on the irreducible curve Y of bidegree (p, q), contradicting [10] and the assumption $q \geq p \geq 3$. Hence we may assume $\delta > 0$. Since f is finite, $h^i(Y, f_*(R)) = h^i(X, R)$ for all i. Since $p_{\delta}(Y) - p_{\delta}(X) = \delta$, Riemann-Roch applied to R on X and to $f_*(R)$ on Y shows that the rank 1 torsion free sheaf $f_*(R)$ has degree $2 + \delta$. By [7] there is a smooth curve C of bidegree (p, q) on $\mathbb{P}^1 \times \mathbb{P}^1$ and a degree 2 + δ line bundle L on C such that $h^0(C, L) \geq h^0(Y, f_*(R))$. Since $h^0(Y, f_*(R)) = h^0(X, R) \geq 2$, the smooth case of [10] gives $\delta = p - 2$. Let C'' be any smooth curve of bidegree (p, q) on $\mathbb{P}^1 \times \mathbb{P}^1$. Every g^1_p on C'' is induced by a ruling of $\mathbb{P}^1 \times \mathbb{P}^1$. Hence C'' has exactly one (resp. two) g^1_p if and only if $q > p$ (resp. $q = p$). Let $\{C_t\}_{t \in \Delta}$ be a smoothing of Y with Δ a connected affine curve, $Y = C_o$ for some $o \in \Delta$, $C = C_o$ for some $t_0 \in \Delta \setminus \{o\}$, and C_t smooth for all $t \in \Delta \setminus \{o\}$. A ruling of $\mathbb{P}^1 \times \mathbb{P}^1$ induces a flat family of spanned and locally free g^1_p and g^1_p on the family $\{C_t\}_{t \in \Delta}$. The quoted uniqueness part for C_t, $t \neq o$, implies that $f_*(R)$ is one of the limits over C_o of the restriction to $\Delta \setminus \{o\}$ of this relative g^1_p. Since the relative compactified Jacobian for integral curves contained in a smooth surface is relatively projective (and hence relatively separated) (see [1], Theorem 9; one can also quote [2] Corollary 6.7 (i), or [2], Theorem 8.5), we get that the sheaf $f_*(R)$ is locally free, i.e. $\delta = 0$, contradiction.

(b) The proof of [11], Proposition 6, shows that the canonical model of our curve X has the same betti numbers as the curve C of [11], Proposition 6 (the case in which X is smooth).
Remark 1. The same proof may be adapted for the linear systems on the Hirzebruch surface F_n used in [4], Corollary 5.

Lemma 3. Fix integers u, v, z, w such that $v \geq u \geq 4$, $0 \leq z \leq u$ and $0 \leq w \leq uv - u - v + 1 - z$. Let $S \subset \mathbb{P}^1 \times \mathbb{P}^1$ be a general subset such that $\sharp(S) = z$. There is a nodal and integral $Y \subset \mathbb{P}^1 \times \mathbb{P}^1$ with bidegree (u, v), $S \subset \text{Sing}(Y)$ and w further ordinary nodes as its only singularities.

Proof. Since $z \leq p \leq q$, we may find a union T of p distinct curves of bidegree $(1, 0)$ and q distinct curves of bidegree $(0, 1)$ such that each point of S is contained in one of these components of bidegree $(1, 0)$ and in a component of bidegree $(0, 1)$, i.e. such that $S \subset \text{Sing}(T)$. Since $\omega_{\mathbb{P}^1 \times \mathbb{P}^1}^* \omega_{\mathbb{P}^1 \times \mathbb{P}^1}^*$ is ample, we may smooth $pq - z - w$ of the points of $\text{Sing}(T) \setminus S$ appyling [12], Lemma 2.2 and Corollary 2.14.

Lemma 4. Fix integers $q \geq p \geq 3$, $0 \leq z \leq p - 2$, $s > 0$ and $a_i \geq 0$, $1 \leq i \leq s$, such that $(a_i, b_i) \neq (0, 0)$ for all i, $\sum_{i=1}^s a_i = p$ and $\sum_{i=1}^s b_i = q$. Set $\epsilon_i := 0$ if $(a_i, b_i) \neq (4, 4)$ and $\epsilon_i := 1$ if $(a_i, b_i) = (4, 4)$. Fix integers $\alpha_i \geq 0$, $\eta_i \geq 0$, $1 \leq i \leq s$, such that $\alpha_i = 0$ if either $a_i \leq 1$ or $b_i \leq 1$, $3a_i + \max\{\eta_i, \epsilon_i\} \leq (a_i + 1)(b_i + 1) - 1$ and $2(\sum_{i=1}^s a_i) + \eta_i = 2z$. Fix a general $S \subset A := \mathbb{P}^1 \times \mathbb{P}^1$ such that $\sharp(S) = z$. There is a nodal $Y \subset A$ such that Y has s irreducible components Y_1, \ldots, Y_s, each Y_i has bidegree (a_i, b_i), $S \subset \text{Sing}(Y)$ and each Y_i contains exactly α_i singular points of Y lying in a unique irreducible component of Y and η_i singular points of Y lying in two irreducible components of Y. Moreover, each finite set $S \cap Y_i \cap Y_j$, $1 \leq i < j \leq s$, may be an arbitrary subset $S_{i,j}$ of S, with the only restriction that with these choices $\sum_{j=i+1}^s \sharp(S_{i,j}) + \sum_{j=1}^{i-1} \sharp(S_{i,j}) = \eta_i$.

Proof. Apply Lemma 5 s times.

The following lemma says that the bound for the vanishing of $K_{x,1}(X, \omega_X) = 0$, i.e. that $K_{P^1 \times \mathbb{P}^1}(X, \omega_X) \neq 0$. Indeed, it allows to apply the proof of [9]; alternatively, if $q > p$ we may use [11], part (c) of Proposition 5.

Lemma 5. Take X as in in the proof of Theorem 1 and let $R \in \text{Pic}^0(X)$ be the spanned line bundle induced by a ruling of $\mathbb{P}^1 \times \mathbb{P}^1$. Let $\mu_R : H^0(X, R) \otimes H^0(X, \omega_X \otimes R^*)$ is separately injective, i.e. $\mu_R(\alpha \otimes \beta) \neq 0$ for all $\alpha \in H^0(X, R) \setminus \{0\}$ and all $\beta \in H^0(X, \omega_X \otimes R^*) \setminus \{0\}$.

Proof. Set $S := \text{Sing}(Y)$. Thus $0 \leq \delta := \sharp(S) \leq p - 2$ and S is general in $\mathbb{P}^1 \times \mathbb{P}^1$. Since $h^1(\mathbb{P}^1 \times \mathbb{P}^1, \mathcal{O}_{\mathbb{P}^1 \times \mathbb{P}^1}) = 0$, adjunction theory gives $H^0(X, \omega_X \otimes R^*) \cong H^0(\mathbb{P}^1 \times \mathbb{P}^1, I_S(p-2, q-2))$. Since the restriction map $H^0(\mathbb{P}^1 \times \mathbb{P}^1, \mathcal{O}_{\mathbb{P}^1 \times \mathbb{P}^1}(1, 0))$ is an isomorphism, it is sufficient to use the separate injectivity of the multipli-
cation map for any two line bundles on \(\mathbb{P}^1 \times \mathbb{P}^1 \), which is true because this is true on an arbitrary integral projective variety.

The proof of [3], Lemma 4.1 (i.e. the case of a smooth curve) gives the following result.

Lemma 6. Let \(X \) be an integral projective curve. Fix an integer \(k > 0 \). Fix \(R \in \text{Pic}(X) \) such that \(h^1(X, R) = 0 \) and assume \(K^0_{h^0(X, R) - k, 1}(X, R) = 0 \). Let \(E \subset X_{\text{reg}} \) be a zero-dimensional scheme. Then \(K^0_{h^0(X, R(E)) - k, 1}(X, R(E)) = 0 \) and \(h^1(X, R(E)) = 0 \).

Lemma 7. Let \(X \) be an integral projective curve. Set \(g := p_a(X) \). Fix an integer \(k > 0 \). Assume the existence of \(R \in \text{Pic}(X) \) such that \(h^1(X, L) = 0 \) and \(K^0_{h^0(X, L) - k, 1}(X, L) = 0 \). Fix an integer \(d \geq \text{deg}(L) + 2g \). Then \(K^0_{h^0(X, L) - k, 1}(X, L) = 0 \) for every \(L \in \text{Pic}^d(X) \).

Proof. Fix \(L \in \text{Pic}^d(X) \). Since \(d - \text{deg}(R) \geq 2g \), the line bundle \(L \otimes R^* \) is spanned. Hence the zero-locus of a general section of \(L \otimes R^* \) is an effective divisor \(E \subset X_{\text{reg}} \). Apply Lemma 6.

Proof of Proposition 1. Set \(q := p_a(X) \) and \(z := \). Take \(Y \) as in the statement of Lemma 2 and let \(X \) be the partial normalization of \(Y \) in which we normalize only the points of \(S \). Part (ii) follows from the proof of the case \(e = 0 \) of [4]. Lemma 7 shows that part (ii) implies part (iii) and hence that \(X \) satisfies the Green-Lazarsfeld conjecture.

Acknowledgements

The author was partially supported by MIUR and GNSAGA of INdAM (Italy).

References

