A COMMON FIXED POINT THEOREM FOR TWO PAIRS OF (IT)-COMMUTING ON CONE METRIC SPACES

K. Prudhvi¹§, M. Rangamma²
Department of Mathematics
Osmania University
Hyderabad, 500 007, Andhra Pradesh, INDIA

Abstract: In this paper, we prove existence of coincidence points and a common fixed point theorem for two pairs of (IT)-Commuting in cone metric spaces. These results extend and improve several well known comparable results in the existing literature.

AMS Subject Classification: 47H10, 54H25
Key Words: cone metric space, common fixed point, coincidence point

1. Introduction and Preliminaries

In 2007 Huang and Zhang [3] have generalized the concept of a metric space, replacing the set of real numbers by an ordered Banach space and obtained some fixed point theorems for mapping satisfying different contractive conditions. Subsequently, Abbas and Jungck [1] and Abbas and Rhoades [2] have studied common fixed point theorems in cone metric spaces (see also [3,4] and the references mentioned therein). Recently, Abbas and Jungck [1] have obtained coincidence points and common fixed point theorems for two mappings in cone metric spaces. The purpose of this paper is to extend and improves the fixed point theorem of Abbas and Jungck [1].

Received: August 12, 2011

© 2012 Academic Publications, Ltd.

§Correspondence author
Throughout this paper, E is a real Banach space, $\mathbb{N} = 1, 2, 3, \ldots$ the set of all natural numbers. For the mappings $f, g : X \to X$, let $C(f, g)$ denotes set of coincidence points of f, g, i.e. $C(f, g) := \{ z \in X : f z = g z \}$.

We recall some definitions of cone metric spaces and some of their properties (see [3]).

Definition 1.1. Let E be a real Banach Space and P be a subset in E. The set P is called cone if and only if:

(a) P is closed, nonempty and $P \neq \{0\}$;

(b) $a, b \in \mathbb{R}, a, b \geq 0, x, y \in P$ implies $ax + by \in P$;

(c) $x \in P$ and $x \in P$ implies $x = 0$.

Definition 1.2. Let P be a cone in a Banach space E, define partial ordering “\leq” on E with respect to P by $x \leq y$ if and only if $y - x \in P$.

We shall write $x < y$ to indicate $x \leq y$, but $x \neq y$, while $x \ll y$ will stand for $y - x \in \text{Int}P$ (here $\text{Int}P$ denotes the interior of the set P). This $\text{Cone}P$ is called order cone.

Definition 1.3. Let E be a Banach space and $P \subset E$ be an order cone. The order cone P is called normal if there exists $L > 0$ such that for all $x, y \in E$

$$0 \text{ implies } \|x\| \leq L\|y\|.$$

The least positive number L satisfying the above inequality is called the normal constant of P.

Definition 1.4. Let X be a nonempty set of E. Suppose that the map $d : X \times X \to E$ satisfies:

(d1) $0 \leq d(x, y)$ for all $x, y \in X$ and $d(x, y) = 0$ if and only if $x = y$;

(d2) $d(x, y) = d(y, x)$ for all $x, y \in X$;

(d3) $d(x, y) \leq d(x, z) + d(z, y)$ for all $x, y, z \in X$.

Then d is called cone metric on X and (X, d) is called a cone metric space.

It is obvious that the cone metric spaces generalize metric spaces.

Example 1.1. (see [3]) Let $E = \mathbb{R}^2$,

$$P = \{(x, y) \in E : x, y \geq 0\} \subset \mathbb{R}^2,$$
X = R and \(d : X \times X \to E \) such that \(d(x, y) = (|x - y|, \alpha|x - y|) \), where \(\alpha \geq 0 \) is a constant. Then \((X, d)\) is a cone metric space.

Definition 1.5. Let \((X, d)\) be a cone metric space. We say that \(\{x_n\} \) is:

(a) Cauchy sequence, if for every \(c \in E \) with \(0 \ll c \), there is \(N \) such that for all \(n, m > N \), \(d(x_n, x_m) \ll c \);

(b) convergent sequence, if for any \(0 \ll c \), there is \(N \) such that for all \(n > N \), \(d(x_n, x) \ll c \), for some fixed \(x \in X \).

A cone metric space \(X \) is said to be complete if every Cauchy sequence in \(X \) is convergent in \(X \).

Lemma 1.1. (see [3]) Let \((X, d)\) be a cone metric space, and let \(P \) be a normal cone with normal constant \(L \). Let \(\{x_n\} \) be a sequence in \(X \). Then:

(i) \(\{x_n\} \) converges to \(x \), if and only if \(d(x_n, x) \to 0 \) \((n \to \infty) \);

(ii) \(\{x_n\} \) is a cauchy sequence, if and only if \(d(x_n, x_m) \to 0 \) \((n, m \to \infty) \).

Definition 1.6. (see [5]) Let \(f, g : X \to X \). Then the pair \((f, g)\) is said to be \((IT)\)-commuting at \(z \) if \(f(g(z)) = g(f(z)) \) with \(f(z) = g(z) \).

2. **Common Fixed Point Theorem**

In this section we obtain existence of coincidence points and a common fixed point theorem for two pairs of \((IT)\)-Commuting defined on a cone metric space.

The following theorem is extends and improves Theorem 2.1 from [1].

Theorem 2.2. Let \((X, d)\) be a cone metric space and \(P \) be a normal cone with normal constant \(L \). Suppose that the mappings \(S, T, I \) and \(J \) are four selfmaps on \(X \) such that \(T(X) \subset I(X) \), \(S(X) \subset J(X) \), and \(T(X) = S(X) \) and satisfy the condition

\[
d(Sx, Ty) \leq kd(Ix, Jy) \quad \text{for all } x, y \in X,
\]

where \(k \in [0, 1) \) is a constant.

If \(S(X) = T(X) \) is a complete subspace of \(X \), then \(\{S, I\} \) and \(\{T, J\} \) have a coincidence point in \(X \). Moreover, if \(\{S, I\} \) and \(\{T, J\} \) are \((IT)\)-commuting then, \(S, T, I \) and \(J \) have a unique common fixed point.

Proof. For any arbitrary point \(x_0 \) in \(X \), construct sequences \(\{x_n\} \) and \(\{y_n\} \) in \(X \) such that

\[
y_{2n} = Sx_{2n} = Jx_{2n+1} \quad \text{and} \quad y_{2n+1} = Tx_{2n+1} = Ix_{2n+2}, \quad \text{for all } n = 0, 1, 2, \ldots
\]
By (2.1), we have
\[d(y_{2n}, y_{2n+1}) = d(Sx_{2n}, Tx_{2n+1}) \leq kd(Ix_{2n}, Jx_{2n+1}) \leq kd(y_{2n-1}, y_{2n}).\]

Similarly, it can be show that
\[d(y_{2n+1}, y_{2n+2}) \leq kd(y_{2n}, y_{2n+1}).\]

Therefore, for all \(n\),
\[d(y_{n+1}, y_{n+2}) \leq kd(y_{n}, y_{n+1}) \leq \cdots \leq k^{n+1}d(y_0, y_1).\]

Now, for any \(m > n\),
\[d(y_n, y_m) \leq d(y_n, y_{n+1}) + d(y_{n+1}, y_{n+2}) + \cdots + d(y_{m-1}, y_m) \leq \left[k^n + k^{n+1} + \cdots + k^{m-1}\right]d(y_1, y_0) \leq \frac{k^n}{1-k}d(y_1, y_0).\]

From (1.3), we have
\[kn\|d(y_n, y_m)\| \leq \frac{k^n}{1-k}L\|d(y_1, y_0)\|.
\]

Which implies that \(d(y_n, y_m) \to 0\) as \(n, m \to \infty\).

Hence \(\{y_n\}\) is a Cauchy sequence.

Let us suppose that \(S(X)\) is complete subspace of \(X\). Completeness of \(S(X)\) implies the existence of \(z \in S(X)\) such that \(\lim_{n \to \infty} y_{2n} = Sx_{2n} = z,\)
\[\lim_{n \to \infty} Jx_{2n+1} = \lim_{n \to \infty} Sx_{2n} = \lim_{n \to \infty} Ix_{2n} = \lim_{n \to \infty} Tx_{2n+1} = z. \quad (2.2)\]

That is, for any \(0 \leq c\), for sufficiently large \(n\), we have \(d(y_n, y) \leq c\).

Since \(z \in T(X) \subset I(X)\), then there exists a point \(u \in X\) such that \(z = Iu\).

We will prove that \(z = Su\). By the triangle inequality, we have:
\[d(Su, z) \leq d(Su, Tx_{2n+1}) + d(Tx_{2n+1}, z) \leq kd(Iu, Jx_{2n+1}) + d(Tx_{2n+1}, z).
\]

Letting \(n \to \infty\), we get
\[d(Su, z) \leq kd(z, z) + d(z, z)\]
\[\leq k(0) + 0 = 0. \]

Hence \(Su = z \).

Therefore \(z = Su = Iu \), and

\[u \text{ is a coincidence point of } S \text{ and } I. \]

(2.3)

Since, \(z = S(X)J(X) \), there exists a point \(v \) such that \(z = Jv \). We will show that \(Tv = z \). We have

\[
\begin{align*}
 d(Tv, z) &\leq d(Su, Tv) \\
 &\leq kd(Iu, Jv) \\
 &\leq kd(z, z) \\
 &= 0.
\end{align*}
\]

Hence \(Tv = z \), and \(z = Tv = Jv \), that is

\[v \text{ is a coincidence point of } T \text{ and } J. \]

(2.4)

From (2.3) and (2.4) it follows that

\[Su = Iu = Tv = Jv (= z). \]

(2.5)

Since \((S, I)\) and \((T, J)\) are \((IT)\)commuting, we have

\[
\begin{align*}
 d(SSu, Su) &= d(SSu, Iu) \\
 &= d(SSu, Tv) \\
 &\leq kd(ISu, Jv) \\
 &= kd(SIu, Su) \\
 &= kd(SSu, Su) \\
 &< d(SSu, Su) \quad \text{(since } k < 1) \\
\end{align*}
\]

A contradiction, therefore \(SSu = Su (= z) \),

\[Su = SSu = SIu = ISu. \]

That is \(SSu = ISu = Su (= z) \).

Therefore

\[Su = z \text{ is a common fixed point of } S \text{ and } I. \]

(2.6)
Similarly, $Tv = TTv = TJv = JTv$ implies $TTv = JTv = Tv (= z)$. Therefore

$$Tv (= z) \text{ is a common fixed point of } T \text{ and } J. \quad (2.7)$$

In view of (2.6) and (2.7) it follows S, T, I and J have a common fixed point, namely z.

Uniqueness. Let z_1 be another common fixed point of S, T, I and J. Then

$$d(z, z_1) = d(Sz, Tz) \leq kd(Iz, Jz_1) \leq kd(z, z_1) < d(z, z_1) \text{ (since } k < 1).$$

This contradiction implies $z = z_1$.

Therefore S, T, I and J have a unique common fixed point. \qed

Remark 2.1. If $S = T$ and $I = J$, then the theorem reduces to the Theorem 2.1 of Abbas and Jungck [1], with $I(X)$ complete, which is an improvement of Theorem 2.1 in [1]. Since in this paper $J(X)$ is complete which is a super space of $I(X)$.

References

