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ABSTRACT: In this article we demonstrate some specialized modules for inves-

tigating the dynamics of some generalized Duffing system with periodic parametric

excitation, an integral part of a planned much more general Web–based application

for scientific computing. We also study some new hypothetical oscillators. Numerical

examples, illustrating our results using CAS MATHEMATICA are given.
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1. INTRODUCTION

In this paper we demonstrate some specialized modules for investigating the dynamics

of some generalized Duffing system with periodic parametric excitation, an integral
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part of a planned much more general Web–based application for scientific computing

(for some details see [10]–[17]).

We also study some new hypothetical oscillators.

More precisely, this WEB Platform envisages research on: Duffing system with

periodic parametric excitation; modified Duffing systems; new hypothetical oscillators;

a modification of the basic Duffing system with periodic parametric excitation.

Numerical examples, illustrating our results using CAS MATHEMATICA are also

given.

In [7]–[8] some investigations and simulations on the planar Rayleigh–Lienard sys-

tem are given.

We note that the use of normalized diagram factor y(b cos θ+c)
N

(where θ is the az-

imuthal angle and c is the phase difference) is very complicated.

Where possible, the corresponding diagram-functions (with application in the field

of antenna analysis and synthesis) generated by the model oscillators investigated in

this article have been generated and visualized.

A natural extension of the planned much more general Web–based application for

scientific computing involves further consideration and simulations on generalized Duff-

ing systems with periodic parametric excitation.

2. MAIN RESULTS. SIMULATIONS

2.1. A LOOK AT THE DUFFING SYSTEM WITH PERIODIC

PARAMETRIC EXCITATION

The Rayleigh–Duffing oscillator models are widely used in physics, electronics, and

many other disciplines.

Consider the following planar system (see for example [1])















dx

dt
= y

dy

dt
= f cos(gt)x − x3 − hy

(1)

where h is the damping coefficient, and f and g are the amplitude and frequency of

excitation.

I. For given f = 6.25, g = 0.1; h = 0.3, the simulations on the system (1) for

x0 = 0.2; y0 = 0.1 are depicted on Fig. 1.
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I.1 For given f = 5, g = 0.05; h = 0.01, the simulations on the system (1) for

x0 = 0.3; y0 = 0.2 are depicted on Fig. 2.

2.2. A LOOK AT THE MODIFIED DUFFING SYSTEM

Chaotic motions of a Rayleigh–Duffing oscillator with periodically external and para-

metric excitations are investigated rigorously.

For some results see [24]–[25].

Consider the planar system (see for example [2])















dx

dt
= y

dy

dt
= x− x3 + ǫ(a1 cos(at)− a2y)

(2)

where 0 ≤ ǫ ≤ 1.

II. For given a1 = 6, a2 = 2, a = 0.005, ǫ = 0.005, the simulations on the system

(2) for x0 = 0.2; y0 = 0.1 are depicted on Fig. 3.

II.1 For given a1 = 0.1, a2 = 0.003, a = 0.005, ǫ = 0.1, the simulations on the

system (2) for x0 = 0.3; y0 = 0.2 are depicted on Fig. 4.

For fixed b = 0.92, c = 0.73 the normalized diagram factor is depicted on Fig. 4 d).

Remark. In [6] the authors study the dynamics of a generalized oscillator model on

the base of model (2) in the light of Melnikov’s approach.

Consider the planar system:















dx

dt
= y

dy

dt
= a1x− a2x

3 + ǫ((1 − y2)y + (1 + x) cos(gt))

(3)

where 0 ≤ ǫ ≤ 1.

III. For given a1 = 0.2, a2 = 0.9, g = 0.02, ǫ = 0.01, the simulations on the system

(3) for x0 = 0.3; y0 = 0.2 are depicted on Fig. 5.

For fixed b = 0.9, c = 0.45 the normalized diagram factor is depicted on Fig. 5 d).
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Figure 1: a) The solutions of differential system; b) y-component of the solu-

tion; c) Phase portrait (example I).
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Figure 2: a) The solutions of differential system; b) y-component of the solu-

tion; c) Phase portrait (example I.1).
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Figure 3: a) The solutions of differential system; b) y-component of the solu-

tion; c) Phase portrait (example II).
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Figure 4: a) The solutions of differential system; b) y-component of the solu-

tion; c) Phase portrait; d) diagram factor (example II.1).
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Figure 5: a) The solutions of differential system; b) y-component of the solu-

tion; c) Phase portrait; d) diagram factor (example III).
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Figure 6: a) The solutions of differential system; b) y-component of the solu-

tion; c) Phase portrait; d) diagram factor (example IV).
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Figure 7: a) The solutions of differential system; b) y-component of the solu-

tion; c) Phase portrait; d) diagram factor (example IV.1).
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2.3. A LOOK AT THE NEW HYPOTHETICAL OSCILLATORS

Consider the following planar system



























dx

dt
= y

dy

dt
= x−

[n
2
]−1

∑

i=0

xn−2i

n−2i + ǫ(a1 cos(at)− a2y)

(4)

where 0 ≤ ǫ ≤ 1.

Remark. Our considerations on the Melnikov homoclinic integral are summarized

in Appendix 1.

IV. For given n = 7, a1 = 0.25, a2 = 0.35, a = 0.55, b = 0.81, c = 0.66, ǫ = 0.005,

the simulations on the system (4) for x0 = 0.2; y0 = 0.1 are depicted on Fig. 6.

IV.1 For given n = 7, a1 = 0.2, a2 = 0.3, a = 0.5, b = 0.8, c = 0.665, ǫ = 0.005,

the simulations on the system (4) for x0 = 0.55; y0 = 0.55 are depicted on Fig. 7.

2.4. A MODIFICATION OF THE MODEL (1)

Consider the following modification of model (1):



























dx

dt
= y

dy

dt
= f cos(gt)x−

[n
2
]−1

∑

i=0

xn−2i − hy

(5)

V. For given n = 7, f = 4, g = 0.07, h = 0.03, the simulations on the system (5)

for x0 = 0.4; y0 = 0.3 are depicted on Fig. 8.

V.1 For given n = 9, f = 5, g = 0.005, h = 0.01, the simulations on the system (5)

for x0 = 0.3; y0 = 0.2 are depicted on Fig. 9.
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Figure 8: a) The solutions of differential system; b) y-component of the solu-

tion; c) Phase portrait (example V).
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Figure 9: a) The solutions of differential system; b) y-component of the solu-

tion; c) Phase portrait (example V.1).
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3. CONCLUDING REMARKS

In this article we demonstrate some specialized modules for investigating the dynamics

of some generalized Duffing system with periodic parametric excitation, an integral

part of a planned much more general Web–based application for scientific computing.

More precisely, this WEB Platform envisages research on: Duffing system with peri-

odic parametric excitation; modified Duffing systems; new hypothetical oscillators; a

modification of the basic Duffing system with periodic parametric excitation and oth-

ers. Where possible, we employ various optimization techniques for highperformance

calculations, including multi–processor and multi–threading calculations, and hardware

intrinsics [15]–[17]. We presented only a small part of the platform’s capabilities. We

will be grateful to all colleagues who, with their critical remarks, will contribute to its

significant improvement. We fully understand that the construction of such an ambi-

tious Web–based platform for scientific computing can only be realized with the active

participation of specialists from various branches of scientific knowledge.

Remark. The study of corresponding critical levels of H(x, y) = 1
2y

2 −P (x) is very

complicated.

In this regard, we recommend the excellent study by Gavrilov and Iliev [28].
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4. APPENDIX 1.

The case n = 3. The system of the type (4)















dx

dt
= y

dy

dt
= x− 1

3x
3 + ǫ(a1 cos(at)− a2y)

has the following Hamiltonian (ǫ = 0)

H(x, y) =
1

2
y2 − 1

2
x2 +

1

12
x4.

The homoclinic orbit is given by (see Fig.10)
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Figure 10: The homoclinic orbit.

x0(t) = ±
√
6sech t

y0(t) = ∓
√
6sech t tanh t.

The Melnikov homoclinic integral is given by:

M(t0) =

∫

∞

−∞

y0(t) (a1 cos(a(t+ t0))− a2y0(t)) dt.

From a numerical point of view, the task of finding a multiple root of M(t0) is more

interesting given that the parameters appearing in the proposed differential model are

subject to a number of restrictions of a physical nature.

The following is valid

Proposition 1. For n = 3 and D = K where

D =
4a2√
6π

cosh
(aπ

2

)

; K = aa1

the Melnikov function M(t0) has root with multiplicity two.

Proof. We have
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M(t0) =

∫

∞

−∞

y0(t) (a1 cos(a(t+ t0))− a2y0(t)) dt

=

∫

∞

−∞

(

−a2y0(t)
2 + y0(t)a1 cos(a(t+ t0))

)

dt

= −4a2 +
√
6aa1πsech

(

aπ
2

)

sin(at0)

=
√
6aa1πsech

(

aπ
2

) (

sin(at0)− D
K

)

This completes the proof of Proposition 1.
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