صندلی اداری

ON THE DUNFORD-PETTIS CRITERION FOR UNIFORMLY INTEGRABLE SETS IN GENERALIZED LEBESGUE-BOCHNER SPACE $L^1(E,(X_\vartheta,\|.\|))$

S. Lahrech, A. Ouahab, A. Benbrik, A. Mbarki, I.E. Hadi

Abstract


Let $(X,\|.\|,\vartheta)$ be a bitopological vector space such
that $(X,\vartheta)$ is a topological vector space, $(X,\|.\|)$ is
a reflexive normed space, the unit ball ${\cal B}_1(X)$ is closed
in $(X,\vartheta)$ and sequentially complete under the topology
$\vartheta$. Let $I=[\alpha,\beta]$ be an interval of $R$. Denote
by $l(X_{\vartheta},R)$ the space of all sequentially continuous
linear mapping from $X_\vartheta$ to $R$.

We prove that if a subset ${\cal K}$ of
$L^1(I,(X_\vartheta,\|.\|))$ is sequentially relatively
compact in
$(L^1(I,(X_\vartheta,\|.\|)),\sigma(L^1(I,(X_\vartheta,\|.\|)),L^{\infty}(I,(l(X_{\vartheta},R),\|.\|_{X'}))))$,\linebreak then it is weakly uniformly integrable.

Full Text: Postscript

Refbacks

  • There are currently no refbacks.
گن لاغری

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.